GBHT: Gradient Boosting Histogram Transform for Density Estimation

Jingyi Cui ${ }^{* 1}$ Hanyuan Hang *2 Yisen Wang ${ }^{1}$ Zhouchen Lin ${ }^{1,3}$

${ }^{1}$ Peking University,
Beijing, China
${ }^{2}$ University of Twente,
Enschede, Netherlands
${ }^{3}$ Pazhou Lab,
Guangzhou, China

July 12, 2021

Outline

(1) Introduction

(2) Main Algorithm

(3) Theoretical Results
(4) Experiments

Motivation

- Why boosting?

Boosting algorithms are praised as one of the most successful algorithms over two decades.

- Why employ boosting on density estimation?
- With most boosting-based algorithms focus on supervised problems, unsupervised boosting algorithms with solid theoretical guarantees remain to be studied.
- Density estimation is one of the most imperative topics in unsupervised learning among machine learning community.

Contributions

- We exploit boosting to improve the accuracy in density estimation by taking an unsupervised loss function.
- We prove the fast convergence rates of GBHT with mild assumptions, which verify the experimental performance.
- We are the first to explain the strength of boosting density estimation by comparing the theoretical properties of single estimator and the boosted one.

Outline

(1) Introduction

(2) Main Algorithm

(3) Theoretical Results

Loss Function

- Average negative log-likelihood (ANLL)

$$
L(x, \hat{f}):=-\log \hat{f}(x) .
$$

- At the t-th iteration, the minimization of the empirical risk equals to the minimization of $\sum_{i=1}^{n}-\log \left(F_{t-1}\left(x_{i}\right)+\varepsilon_{t} f_{t}\left(x_{i}\right)\right)$. Using Taylor expansion, we get

$$
\begin{aligned}
& \sum_{i}-\log \left(F_{t-1}\left(x_{i}\right)+\varepsilon_{t} f_{t}\left(x_{i}\right)\right) \\
& =\sum_{i}-\log \left(F_{t-1}\left(x_{i}\right)\right)-\varepsilon_{t} \cdot \frac{1}{F_{t-1}\left(x_{i}\right)} f_{t}\left(x_{i}\right)+O\left(\varepsilon_{t}^{2}\right)
\end{aligned}
$$

Main Algorithm

Algorithm 1 Gradient Boosting Histogram Transform (GBHT)
Input: Training data $D:=\left\{x_{1}, \ldots, x_{n}\right\}$;
Bandwidth parameters $\underline{h}_{0}, \bar{h}_{0}$;
Number of iterations T.
Initialization: F_{0} is set to be uniformly distributed on cells $A_{j} \in \pi_{H}$ satisfying $A_{j} \cap D \neq \varnothing$.
for $t=1$ to T do
Set the sample weight $\omega_{t, i}=1 / F_{t-1}\left(x_{i}\right)$;
For random histogram transformation H_{t} :
Find $f_{t}=\arg \max _{f \in \mathcal{F}_{t}} \sum_{i=1}^{n} \omega_{t, i} f\left(x_{i}\right)$;
Find $\alpha_{t}:=\arg \min _{\alpha} \sum_{i=1}^{n}-\log \left((1-\alpha) F_{t-1}\left(x_{i}\right)+\alpha f_{t}\left(x_{i}\right)\right)$;
Update $F_{t}=\left(1-\alpha_{t}\right) F_{t-1}+\alpha_{t} f_{t}$;
end for
return F_{T}.

Histogram Transform Partition

Histogram Transform for input space:

Original

Transformation induced by H 1

Transformation induced by H2

Figure: Two possible histogram transforms in 2-D.

GBHT under the RERM Framework

- Function space:

$$
\mathcal{F}_{\mathrm{H}}:=\left\{\sum_{j \in \mathcal{I}_{\mathrm{H}}} c_{j} \mathbf{1}_{A_{j}} \mid c_{j} \geq 0, \sum_{j \in \mathcal{I}_{\mathrm{H}}} c_{j} \mu\left(A_{j}\right)=1\right\}
$$

- We calculate the HT density estimator by the RERM over \mathcal{F}_{H} i.e.

$$
\left(f_{\mathrm{D}, \mathrm{H}}, h^{*}\right)=\underset{f \in \mathcal{F}_{\mathrm{H}}, h \in \mathbb{R}^{d}}{\operatorname{argmin}} \Omega(h)+\mathcal{R}_{\mathrm{L}, \mathrm{D}}(f),
$$

where $\Omega(h)$ represent the penalty on model complexity.

Outline

(1) Introduction

(2) Main Algorithm

(3) Theoretical Results

Main Theoretical Results

- Fast convergence rates.
- Rate $O\left(n^{-\frac{2 \alpha}{4 \alpha+d}}\right)$ in $C^{0, \alpha}$ with high probability.
- Boosting helps improve rates.
- Rate $O\left(n^{-\frac{2(1+\alpha)}{4(1+\alpha)+d}}\right)$ in $C^{1, \alpha}$ by choosing $T_{n} \gtrsim n^{\frac{2 \alpha}{4(1+\alpha)+d}}$.
- Deficiency of base estimators.
- Lower bound of excess risk $O\left(n^{-\frac{2}{2+d}}\right)$ in $C^{1, \alpha}$.
- When $d \geq 2(1+\alpha) / \alpha$, the upper bound of boosting estimator is smaller than this lower bound for base estimators.

Outline

(1) Introduction

(2) Main Algorithm

(3) Theoretical Results
(4) Experiments

Experiments

Table: Average $A N L L$ and MAE over simulated datasets

d	Method	Type I		Type II		Type III		Type IV	
		ANLL	MAE	ANLL	MAE	ANLL	MAE	ANLL	MAE
5	GBHT (Ours)	6.26	$2.41 \mathrm{e}-3$	-0.80	10.31	8.23	6.61e-4	3.85	0.14
	KDE	6.33	$2.36 \mathrm{e}-3$	-0.32	12.40	8.65	$8.27 e-4$	3.86	0.15
	MIX	6.53	$3.08 \mathrm{e}-3$	1.82	13.91	9.64	9.54e-4	5.35	0.14
	HDE	9.33	$4.86 \mathrm{e}-3$	10.17	19.70	10.77	$1.33 e-3$	6.09	0.17
7	GBHT (Ours)	8.36	$4.33 \mathrm{e}-4$	-0.45	34.91	10.81	5.30e-5	5.10	0.18
	KDE	8.77	$5.13 e-4$	0.03	40.74	12.48	$6.05 e-5$	5.16	0.18
	MIX	8.65	$5.38 \mathrm{e}-4$	2.61	42.13	11.34	6.32e-5	7.02	0.19
	HDE	11.35	$1.45 \mathrm{e}-3$	11.48	73.97	11.49	$1.05 \mathrm{e}-4$	9.88	0.20

* The best results are marked in bold.

Experiments

Table: Average ANLL over real data sets

* The best results are marked in bold, and the standard deviation is reported in the parenthesis. The results of MIX on lonosphere with $d^{\prime}=10,17,24$ is corrupted due to numerical problems.
in thank (x) you

