Using ensembles for reducing the estimation bias in Q-Learning algorithms

Oren Peer

Advisor: Prof. Ron Meir

June 2021

Based on our recently accepted paper:

Ensemble Bootstrapping for Q-Learning Oren Peer, Chen Tessler, Nadav Merlis, Ron Meir

The Thirty-eighth International Conference on Machine Learning (ICML 2021)

Thanks,

Reinforcement learning (RL)

• State – $s_t \in S$. Action – $a_t \in A$. Scalar reward – r_t . Transition probability – $P(s_{t+1}|s_t, a)$. Discount factor $\gamma \in [0, 1]$.

- State $s_t \in \mathcal{S}$.
 - Action $a_t \in A$.
 - Scalar reward r_t .
 - Transition probability $P(s_{t+1}|s_t, a)$. Discount factor $\gamma \in [0, 1]$.
- Policy π : $S \rightarrow A$, how to act in a given state.

- State $s_t \in \mathcal{S}$.
 - Action $a_t \in A$.
 - Scalar reward r_t .
 - Transition probability $P(s_{t+1}|s_t, a)$. Discount factor $\gamma \in [0, 1]$.
- Policy $\pi : S \to A$, how to act in a given state.
- Value $v^{\pi}(s) = \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}) | s_{0} = s \right].$

- State $s_t \in S$. Action – $a_t \in A$. Scalar reward – r_t . Transition probability – $P(s_{t+1}|s_t, a)$. Discount factor $\gamma \in [0, 1]$.
- Policy $\pi : S \to A$, how to act in a given state.
- Value $\nu^{\pi}(s) = \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}) | s_{0} = s \right].$
- Q-function $Q^{\pi}(s, a) = \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^t r_t(s_t, a_t) | s_0 = s, a_0 = a \right]$

• Value based methods: learn the *value* of each state \rightarrow Infer optimal policy.

- Value based methods: learn the *value* of each state \rightarrow Infer optimal policy.
 - Temporal Difference (TD) methods *Bootstrapping* using the next state(s) values.

- Value based methods: learn the *value* of each state \rightarrow Infer optimal policy.
 - Temporal Difference (TD) methods *Bootstrapping* using the next state(s) values.
 - Tabular methods Q-Learning, SARSA...

- Value based methods: learn the *value* of each state \rightarrow Infer optimal policy.
 - Temporal Difference (TD) methods *Bootstrapping* using the next state(s) values.
 - Tabular methods Q-Learning, SARSA...

- Value based methods: learn the *value* of each state \rightarrow Infer optimal policy.
 - Temporal Difference (TD) methods *Bootstrapping* using the next state(s) values.
 - Tabular methods Q-Learning, SARSA...
 - Large state spaces and large/continues state/action spaces,
 Function approximations (e.g., Deep Q-Networks- DQN).

Bootstrapping using the *Optimal Bellman Operator* causes TD algorithms to overestimate the value function \rightarrow Slow convergence!

• QL learns *Q*^{*} from transition tuples (*s*, *a*, *r*, *s*'), by iteratively applying the optimal Bellman operator:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha(r_t + \gamma \max_{a'} Q(s',a')).$$

• QL learns Q^* from transition tuples (*s*, *a*, *r*, *s'*), by iteratively applying the optimal Bellman operator:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha(r_t + \gamma \max_{a'} Q(s',a')).$$

• The *max* term causes QL to *overestimate* the next-state Q-values. \rightarrow slow convergence and poor performance¹.

¹Van Hasselt 2010.

• QL learns *Q*^{*} from transition tuples (*s*, *a*, *r*, *s*'), by iteratively applying the optimal Bellman operator:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha(r_t + \gamma \max_{a'} Q(s',a')).$$

- The *max* term causes QL to *overestimate* the next-state Q-values.
 → slow convergence and poor performance¹.
- Overestimation main reason to the divergence of QL-based algorithms².

¹Van Hasselt 2010. ²Van Hasselt et al. 2018.

Consider the following Chain-MDP where $\mu_i < 0$.

Figure: The Chain MDP

Optimal policy: Pick "Right" action from A^{i} . Forever!

Update Rule:
$$Q(s, a) \leftarrow (1 - lpha) Q(s, a) + lpha(r_t + \gamma \max_{a'} Q(s', a'))$$

Update Rule:
$$Q(s, a) \leftarrow (1 - lpha) Q(s, a) + lpha(r_t + \gamma \max_{a'} Q(s', a'))$$

Update Rule:
$$Q(s, a) \leftarrow (1 - lpha) Q(s, a) + lpha(r_t + \gamma \max_{a'} Q(s', a'))$$

Update Rule:
$$Q(s, a) \leftarrow (1 - lpha) Q(s, a) + lpha(r_t + \gamma \max_{a'} Q(s', a'))$$

Slow convergence of QL over the chain MDP, available actions at state B - 10. $r(B, \cdot) \sim \mathcal{N}(-0.2, 1)$

General Optimism

• QL overestimates the Q-function. This can be bad **<u>sometimes</u>**.

- QL overestimates the Q-function. This can be bad <u>sometimes</u>.
- The problem gets worse when dealing with function approximators:

- QL overestimates the Q-function. This can be bad **<u>sometimes</u>**.
- The problem gets worse when dealing with function approximators:
 - Target Approximation Error (TAE) [Thrun and Schwartz 1993].

- QL overestimates the Q-function. This can be bad <u>sometimes</u>.
- The problem gets worse when dealing with function approximators:
 - Target Approximation Error (TAE) [Thrun and Schwartz 1993].
 - Neural Networks: DeepRL 'The Deadly Triad' [Van Hasselt et al. 2018].

• Avoiding overestimation, DQL combines two Q-estimators: Q^A and Q^B , each updated over a **unique subset** of gathered experience.

- Avoiding overestimation, DQL combines two Q-estimators: Q^A and Q^B , each updated over a **unique subset** of gathered experience.
- Two-Phased update step of estimator A:

(1)
$$\hat{a}_{A}^{*} = \operatorname*{argmax}_{a'} Q^{A}(s_{t+1}, a')$$

(2) $Q^{A}(s_{t}, a_{t}) \leftarrow (1 - \alpha_{t})Q^{A}(s_{t}, a_{t})$
 $+ \alpha_{t} \left(r_{t} + \gamma Q^{B}(s_{t+1}, \hat{a}_{A}^{*})\right)$

- Avoiding overestimation, DQL combines two Q-estimators: Q^A and Q^B , each updated over a **unique subset** of gathered experience.
- Two-Phased update step of estimator A:

(1)
$$\hat{a}_{A}^{*} = \operatorname*{argmax}_{a'} Q^{A}(s_{t+1}, a')$$

(2) $Q^{A}(s_{t}, a_{t}) \leftarrow (1 - \alpha_{t})Q^{A}(s_{t}, a_{t})$
 $+ \alpha_{t} \left(r_{t} + \gamma Q^{B}(s_{t+1}, \hat{a}_{A}^{*})\right)$

For updating estimator B, the indices A and B are flipped.

DQL combines two Q-estimators: Q^A and Q^B , each updated over a unique subset of gathered experience. *UPDATE_A* ~ *Bern*(p = 0.5).

Algorithm 1: Double Q-Learning (DQL)

Initialize: Two O-tables: O^A and O^B , s_0 . **for** t = 1, ..., T **do** Choose action $a_t = \arg \max_a \left[Q^A(s_t, a) + Q^B(s_t, a) \right]$ $a_t = \exp[\operatorname{ore}(a_t)];$ $s_{t+1}, r_t \leftarrow \text{env.step}(s_t, a_t)$ **if** *UPDATE_A.Sample()* = 1 **then** Define $a^* = \arg \max_a Q^A(s_{t+1}, a)$ $Q^{A}(s_{t}, a_{t}) \leftarrow Q^{A}(s_{t}, a_{t}) + \alpha_{t} \left(r_{t} + \gamma Q^{B}(s_{t+1}, a^{*}) - Q^{A}(s_{t}, a_{t}) \right)$ else // IIPDATE B Define $\mathbf{b}^* = \arg \max_{\mathbf{a}} Q^B(s_{t+1}, \mathbf{a})$ $Q^B(s_t, a_t) \leftarrow Q^B(s_t, a_t) + \alpha_t \left(r_t + \gamma Q^A(s_{t+1}, \mathbf{b}^*) - Q^B(s_t, a_t) \right)$ **Result:** $\{O^A, O^B\}$

// e.g. ϵ -greedy

• DQL mitigates the overestimation. But, results with underestimation.
Consider the following Chain-MDP where $\mu_i > 0$

Figure: The Chain MDP

General Pessimism

• QL overestimates → **'optimistic'**. Hence, performs well in environments where **optimism is beneficial**!

- QL overestimates → **'optimistic'**. Hence, performs well in environments where **optimism is beneficial**!
- DQL underestimates → **'pessimistic'**. Hence, performs well in environments where **pessimism is beneficial**!

- QL overestimates → 'optimistic'. Hence, performs well in environments where optimism is beneficial!
- DQL underestimates → **'pessimistic'**. Hence, performs well in environments where **pessimism is beneficial**!
- In the general case, the performance of QL and DQL is highly dependent on the 'environment nature'.

- QL overestimates → 'optimistic'. Hence, performs well in environments where optimism is beneficial!
- DQL underestimates → **'pessimistic'**. Hence, performs well in environments where **pessimism is beneficial**!
- In the general case, the performance of QL and DQL is highly dependent on the 'environment nature'.

What if we do not have **prior knowledge** about the environment nature?

Environment that involves both 'optimistic' and 'pessimistic' scenarios.

Statistical framework - Estimating the Maximum Expected Value

The *future reward* is a random variable, $R^{\pi}(s) = \sum_{t=0}^{\infty} \gamma^{t} r_{t} | s_{0} = s, a \sim \pi(s_{t})$.

$$\frac{\text{Denoting:}}{(\mu_1, \dots, \mu_m)} \triangleq (R^{\pi}(s_{t+1}, a_1), \dots, R^{\pi}(s_{t+1}, a_m)), \\ (\mu_1, \dots, \mu_m) \triangleq (Q^{\pi}(s_{t+1}, a_1), \dots, Q^{\pi}(s_{t+1}, a_m)),$$

The **next-state value** used by QL is determined by:

$$Q^*(s_{t+1}, a^*) = \mu^* = \max_a \mu_a.$$

Statistical framework - Estimating the Maximum Expected Value

<u>Problem:</u> estimate the *maximal expected value* of *m* independent random variables $\{X_1, \ldots, X_m\}$, with means $\{\mu_1, \ldots, \mu_m\}$:

$$\max_{a} \mathbb{E} \left[X_a \right] = \max_{a} \mu_a \triangleq \mu^* ,$$

Based on N i.i.d. samples from the same distribution as $\{X\}_{i=1}^m$: $\{S\}_{i=1}^m$

Single Estimator (SE): Use the maximal empirical mean of the samples.

$$\hat{\mu}_{SE}^* \triangleq \max_a \hat{\mu}_a(S_a) = \max_a \frac{1}{N} \sum_{j=1}^N S_a(j) .$$

$$N \left\{ \begin{array}{c} & & \\ &$$

SE is proved to **<u>overestimate</u>** μ^* .

SE is proved to **<u>overestimate</u>** μ^* .

Proof:

- Let $a^* \in \operatorname{arg} \max_{a \in [m]} \mu_a$, and $\hat{a}^* = \operatorname{arg} \max_{a \in [m]} \hat{\mu}_a$
- SE is unbiased: $\mathbb{E}[\mu_{a^*}] = \hat{\mu}_{a^*}$

SE is proved to **<u>overestimate</u>** μ^* .

Proof:

- Let $a^* \in \operatorname{arg} \max_{a \in [m]} \mu_a$, and $\hat{a}^* = \operatorname{arg} \max_{a \in [m]} \hat{\mu}_a$
- SE is unbiased: $\mathbb{E}[\mu_{a^*}] = \hat{\mu}_{a^*}$
- Then: $\hat{\mu}_{a^*} \leq \hat{\mu}_{\hat{a}^*}$. And also $\mu_{a^*} \hat{\mu}_{\hat{a}^*} \leq \mu_{a^*} \hat{\mu}_{a^*}$

SE is proved to **<u>overestimate</u>** μ^* .

Proof:

- Let $a^* \in \operatorname{arg} \max_{a \in [m]} \mu_a$, and $\hat{a}^* = \operatorname{arg} \max_{a \in [m]} \hat{\mu}_a$
- SE is unbiased: $\mathbb{E}[\mu_{a^*}] = \hat{\mu}_{a^*}$
- Then: $\hat{\mu}_{a^*} \leq \hat{\mu}_{\hat{a}^*}$. And also $\mu_{a^*} \hat{\mu}_{\hat{a}^*} \leq \mu_{a^*} \hat{\mu}_{a^*}$
- Monotonicity of the expectation: $\mathbb{E}\left[\mu_{a^*} \hat{\mu}_{\hat{a}^*}\right] \leq \mathbb{E}\left[\mu_{a^*} \hat{\mu}_{a^*}\right] = 0$

Single Estimator and Double Estimator

Double Estimator (DE): The samples of each random variable $a \in [m]$ are split into two disjoint, equal-sized subsets $S_a^{(1)}$ and $S_a^{(2)}$ **2-phase** estimation process:

Double Estimator (DE): The samples of each random variable $a \in [m]$ are split into two disjoint, equal-sized subsets $S_a^{(1)}$ and $S_a^{(2)}$ **2-phase** estimation process:

• The **index** \hat{a}^* is estimated using $S^{(1)}$: $\hat{a}^* = \operatorname{argmax}_a \hat{\mu}_a^{(1)}$.

<u>Double Estimator (DE)</u>: The samples of each random variable $a \in [m]$ are split into two disjoint, equal-sized subsets $S_a^{(1)}$ and $S_a^{(2)}$ **2-phase** estimation process:

- The **index** \hat{a}^* is estimated using $S^{(1)}$: $\hat{a}^* = \operatorname{argmax}_a \hat{\mu}_a^{(1)}$.
- The mean of $X_{\hat{a}^*}$ is estimated using $S_{\hat{a}^*}^{(2)}$: $\hat{\mu}_{\text{DE}}^* = \hat{\mu}^{(2)}_{\hat{a}^*}$.

Single Estimator and Double Estimator

<u>Double Estimator (DE)</u>: The samples of each random variable $a \in [m]$ are split into two disjoint, equal-sized subsets $S_a^{(1)}$ and $S_a^{(2)}$ **2-phase** estimation process:

- The **index** \hat{a}^* is estimated using $S^{(1)}$: $\hat{a}^* = \operatorname{argmax}_a \hat{\mu}_a^{(1)}$.
- The **mean** of $X_{\hat{a}^*}$ is estimated using $S_{\hat{a}^*}^{(2)}$: $\hat{\mu}_{\text{DE}}^* = \hat{\mu}^{(2)}_{\hat{a}^*}$.

DE is proved to <u>underestimate</u> μ^* .³

³Van Hasselt 2010.

Oren Peer

Single Estimator and Double Estimator

Double Estimator (DE): The samples of each random variable $a \in [m]$ are split into two disjoint, equal-sized subsets $S_a^{(1)}$ and $S_a^{(2)}$

³Van Hasselt 2010.

Oren Peer

Ensemble Estimator (EE): The samples of each random variable $a \in [m]$ are split into K disjoint, equal-sized subsets $\{S_a^{(i)}\}_{i=1}^{K}$. 2-phase estimation process:

Ensemble Estimator (EE): The samples of each random variable $a \in [m]$ are split into K disjoint, equal-sized subsets $\{S_a^{(i)}\}_{i=1}^{K}$. 2-phase estimation process:

• A single arbitrary set $\tilde{k} \in [K]$ is used to estimate the **index**: $\hat{a}^* = \operatorname{argmax}_a \hat{\mu}_a^{(k)}$.

Ensemble Estimator (EE): The samples of each random variable $a \in [m]$ are split into K disjoint, equal-sized subsets $\{S_a^{(i)}\}_{i=1}^{K}$. 2-phase estimation process:

- A single arbitrary set $\tilde{k} \in [K]$ is used to estimate the **index**: $\hat{a}^* = \operatorname{argmax}_a \hat{\mu}_a^{(k)}$.
- the **mean** is estimated using the rest of the ensemble:

$$\hat{\mu}_{\text{EE}}^* \triangleq \frac{1}{K-1} \sum_{j \in [K] \setminus \tilde{k}} \hat{\mu}_{\hat{a}^*}^{(j)}.$$

Ensemble Estimator (EE): The samples of each random variable $a \in [m]$ are split into K disjoint, equal-sized subsets $\{S_a^{(i)}\}_{i=1}^{K}$. 2-phase estimation process:

- A single arbitrary set $\tilde{k} \in [K]$ is used to estimate the **index**: $\hat{a}^* = \operatorname{argmax}_a \hat{\mu}_a^{(k)}$.
- the **mean** is estimated using the rest of the ensemble:

$$\hat{\mu}_{\text{EE}}^* \triangleq \frac{1}{K-1} \sum_{j \in [K] \setminus \tilde{k}} \hat{\mu}_{\hat{a}^*}^{(j)}.$$

Note that $K = 2 \iff DE = EE$

Ensemble Estimator (EE)

 $a \in [m]$ are split into two disjoint, **not**-equal-sized subsets $S_a^{(1)}$ and $S_a^{(2)}$, where $|S_a^{(1)}| < |S_a^{(2)}|$. **2-phase** estimation process:

 $a \in [m]$ are split into two disjoint, **not**-equal-sized subsets $S_a^{(1)}$ and $S_a^{(2)}$, where $|S_a^{(1)}| < |S_a^{(2)}|$. **2-phase** estimation process:

• The **index** \hat{a}^* is estimated using $S^{(1)}$: $\hat{a}^* = \operatorname{argmax}_a \hat{\mu}_a^{(1)}$.

 $a \in [m]$ are split into two disjoint, **not**-equal-sized subsets $S_a^{(1)}$ and $S_a^{(2)}$, where $|S_a^{(1)}| < |S_a^{(2)}|$. **2-phase** estimation process:

- The **index** \hat{a}^* is estimated using $S^{(1)}$: $\hat{a}^* = \operatorname{argmax}_a \hat{\mu}_a^{(1)}$.
- The **mean** of $X_{\hat{a}^*}$ is estimated using $S_{\hat{a}^*}^{(2)}$: $\hat{\mu}_{W-DE}^* = \hat{\mu}^{(2)}_{\hat{a}^*}$.

 $a \in [m]$ are split into two disjoint, **not**-equal-sized subsets $S_a^{(1)}$ and $S_a^{(2)}$, where $|S_a^{(1)}| < |S_a^{(2)}|$. **2-phase** estimation process:

- The **index** \hat{a}^* is estimated using $S^{(1)}$: $\hat{a}^* = \operatorname{argmax}_a \hat{\mu}_a^{(1)}$.
- The **mean** of $X_{\hat{a}^*}$ is estimated using $S_{\hat{a}^*}^{(2)}$: $\hat{\mu}_{W-DE}^* = \hat{\mu}^{(2)}_{\hat{a}^*}$.

W-DE **<u>underestimates</u>** μ^* same as DE.

Proposition - Proxy Identity

 $\hat{\mu}_{\rm EE}^{*} = \hat{\mu}_{\rm W\text{-}DE}^{*}$

W-DE offers much easier formulation for analysis! Yet less appealing for RL.

Proposition - SNR and suboptimal ratio

Let $X = (X_1, X_2) \sim \mathcal{N}((\mu_1, \mu_2)^T, \sigma^2 I_2)$ be a Gaussian random vector such that $\mu_1 \ge \mu_2$ and let $\Delta = \mu_1 - \mu_2$. Also, define the signal to noise ratio as SNR = $\frac{\Delta}{\sigma/\sqrt{N}}$ and let $\hat{\mu}^*_{W-DE}$ be a W-DE that uses N_1 samples for index estimation. Then, for any fixed even sample-size N > 10 and any N_1^* that minimizes MSE($\hat{\mu}^*_{W-DE}$), it holds that:

- (1) As SNR $\rightarrow \infty$, $N_1^* \rightarrow 1$
- (2) As SNR \rightarrow 0, $N_1^* \rightarrow 1$
- (3) For any σ and Δ , it holds that $N_1^* < N/2$.

Proposition - SNR and suboptimal ratio

Let $X = (X_1, X_2) \sim \mathcal{N}((\mu_1, \mu_2)^T, \sigma^2 I_2)$ be a Gaussian random vector such that $\mu_1 \ge \mu_2$ and let $\Delta = \mu_1 - \mu_2$. Also, define the signal to noise ratio as SNR = $\frac{\Delta}{\sigma/\sqrt{N}}$ and let $\hat{\mu}^*_{W-DE}$ be a W-DE that uses N_1 samples for index estimation. Then, for any fixed even sample-size N > 10 and any N_1^* that minimizes MSE($\hat{\mu}_{W-DE}^*$), it holds that:

(1) As SNR
$$\rightarrow \infty$$
, $N_1^* \rightarrow 1$

- (2) As SNR $\rightarrow 0$, $N_1^* \rightarrow 1$

Weighted Double Estimator

Figure: Left: MSE as function of N_1 . Right: Optimal split-ratio as function of SNR

• We show that when facing **LOW** SNR (variables are hard to distinguish) it is MSE-beneficial to use large ensembles.

- We show that when facing **LOW** SNR (variables are hard to distinguish) it is MSE-beneficial to use large ensembles.
- RL is considered as **noisy** environment, hence we expect large EE-like algorithms will reduce the MSE of the Q-function estimation.
Algorithm 2: Ensemble Bootstrapped Q-Learning (EBQL)

Initialize: K Q-tables: $\{Q^i\}_{i=1}^{K}$ for t = 1, ..., T do Choose action $a_t = \operatorname{argmax}_a \left[\sum_{i=1}^{K} Q^i(s_t, a)\right]$ $a_t = \exp \operatorname{lore}(a_t)$; // e.g. ϵ -greedy $s_{t+1}, r_t \leftarrow \operatorname{env.step}(s_t, a_t)$ Sample an ensemble member to update: $k_t \sim \mathcal{U}([K])$ Define $\hat{a}^* = \operatorname{argmax}_a Q^{k_t}(s_{t+1}, a)$ $Q^{k_t}(s_t, a_t) \leftarrow (1 - \alpha_t) Q^{k_t}(s_t, a_t) + \alpha_t (r_t + \gamma Q^{EN \setminus k_t}(s_{t+1}, \hat{a}^*))$ Result: $\{Q^i\}_{i=1}^{K}$

Where $Q^{EN\setminus k_t}(s_{t+1}, \hat{a}^*) = \frac{1}{K-1} \sum_{j \in [K] \setminus k_t} Q^j(s_{t+1}, \hat{a}^*).$

Results: Meta Chain MDP

Figure: EBQL Vs. QL and DQL

$$\forall i \in [K], \quad TD_{Avg}^{i}(s_{t}, a_{t}) = r_{t} + \gamma \max_{a} \left[\frac{1}{K} \sum_{k} Q^{k}(s_{t+1}, a) \right] - Q^{i}(s_{t}, a_{t})$$

$$\forall i \in [K], \quad TD_{Avg}^{i}(s_{t}, a_{t}) = r_{t} + \gamma \max_{a} \left[\frac{1}{K} \sum_{k} Q^{k}(s_{t+1}, a) \right] - Q^{i}(s_{t}, a_{t})$$

• Reduces the variance of the target approximation error.

$$\forall i \in [K], \quad TD_{Avg}^{i}(s_{t}, a_{t}) = r_{t} + \gamma \max_{a} \left[\frac{1}{K} \sum_{k} Q^{k}(s_{t+1}, a) \right] - Q^{i}(s_{t}, a_{t})$$

- Reduces the variance of the target approximation error.
- Still Overestimates.

$$\forall i \in [K], \quad TD^{i}_{Avg}(s_t, a_t) = r_t + \gamma \max_{a} \left[\frac{1}{K} \sum_{k} Q^{k}(s_{t+1}, a) \right] - Q^{i}(s_t, a_t)$$

- Reduces the variance of the target approximation error.
- Still Overestimates.
- MaxMin Q-Learning, Lan et al. 2020 Construct a **'pessimist'** target: $Q_{min}(s, a) = \min_{K \in [K]} Q^k(s, a), \forall a$.

$$\forall i \in [K], \quad TD_{Avg}^{i}(s_{t}, a_{t}) = r_{t} + \gamma \max_{a} \left[\frac{1}{K} \sum_{k} Q^{k}(s_{t+1}, a) \right] - Q^{i}(s_{t}, a_{t})$$

- Reduces the variance of the target approximation error.
- Still Overestimates.
- MaxMin Q-Learning, Lan et al. 2020 Construct a **'pessimist'** target: $Q_{min}(s, a) = \min_{K \in [K]} Q^k(s, a), \forall a.$

$$\forall i \in [K], \quad TD^i_{maxMin}(s_t, a_t) = r_t + \gamma \max_a Q_{min}(s_{t+1}, a) - Q^i(s_t, a_t)$$

Results: Meta Chain MDP

Figure: EBQL Vs. QL, DQL, Avg. QL and MaxMin-QL

Arcade Learning Environment (ALE) - Atari

Arcade Learning Environment (ALE) - Atari

Figure: Atari Console: Input image-size: 160X210 Pixels, 18 discrete actions defined by the joystick controller.

Results: Atari

Figure: Comparison of the DQN, DDQN, Rainbow⁴ and EBQL agents on 11 random ATARI environments.

⁴Hessel et al. 2018.

• QL - Overestimates. Might be harmful sometimes.

- QL Overestimates. Might be harmful sometimes.
- DQL solves overestimation. Results with underestimating. *Widely used across SOTA algorithms*.

- QL Overestimates. Might be harmful sometimes.
- DQL solves overestimation. Results with underestimating. *Widely used across SOTA algorithms*.
- We can do (MSE) better! EBQL reduces the MSE of next-state Q-function using better 'budget' split between *index* and *mean* estimations.

- QL Overestimates. Might be harmful sometimes.
- DQL solves overestimation. Results with underestimating. *Widely used across SOTA algorithms*.
- We can do (MSE) better! EBQL reduces the MSE of next-state Q-function using better 'budget' split between *index* and *mean* estimations.

- QL Overestimates. Might be harmful sometimes.
- DQL solves overestimation. Results with underestimating. *Widely used across SOTA algorithms*.
- We can do (MSE) better! EBQL reduces the MSE of next-state Q-function using better 'budget' split between *index* and *mean* estimations.

• Improve DQL-based SOTA algorithms using EBQL.

- QL Overestimates. Might be harmful sometimes.
- DQL solves overestimation. Results with underestimating. *Widely used across SOTA algorithms*.
- We can do (MSE) better! EBQL reduces the MSE of next-state Q-function using better 'budget' split between *index* and *mean* estimations.

- Improve DQL-based SOTA algorithms using EBQL.
- Convergence, rates, optimal split ratio.

- QL Overestimates. Might be harmful sometimes.
- DQL solves overestimation. Results with underestimating. *Widely used across SOTA algorithms*.
- We can do (MSE) better! EBQL reduces the MSE of next-state Q-function using better 'budget' split between *index* and *mean* estimations.

- Improve DQL-based SOTA algorithms using EBQL.
- Convergence, rates, optimal split ratio.
- Dynamic split-ratio using values+variance estimations (we already have an ensemble..)

Thank You.

- nschel, Oron, Nir Baram, and Nahum Shimkin (2017). "Averaged-dqn: Variance reduction and stabilization for deep reinforcement learning". In: *International Conference on Machine Learning*. PMLR, pp. 176–185.
- Hessel, Matteo et al. (2018). "Rainbow: Combining improvements in deep reinforcement learning". In: *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 32.
- Lan, Qingfeng et al. (2020). "Maxmin q-learning: Controlling the estimation bias of q-learning". In: *arXiv preprint arXiv:2002.06487*.
- Smith, James E and Robert L Winkler (2006). "The optimizer's curse: Skepticism and postdecision surprise in decision analysis". In: *Management Science* 52.3, pp. 311–322.
- Thrun, Sebastian and Anton Schwartz (1993). "Issues in using function approximation for reinforcement learning". In: *Proceedings of the 1993 Connectionist Models Summer School Hillsdale, NJ. Lawrence Erlbaum.*
- Van Hasselt, Hado (2010). "Double Q-learning". In: *Advances in neural information processing systems* 23, pp. 2613–2621.
- Van Hasselt, Hado et al. (2018). "Deep reinforcement learning and the deadly triad". In: *arXiv preprint arXiv:1812.02648*.
- Watkins, Christopher JCH and Peter Dayan (1992). "Q-learning". In: *Machine learning* 8.3-4, pp. 279–292.