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Reinforcement learning (RL)
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@ Value based methods: learn the value of each state — Infer optimal policy.
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@ Value based methods: learn the value of each state — Infer optimal policy.
o Temporal Difference (TD) methods - Bootstrapping using the next state(s) values.

o Tabular methods - Q-Learning, SARSA...

o Large state spaces and large/continues state/action spaces,
, Function approximations (e.g., Deep Q-Networks- DQN).

Bootstrapping using the Optimal Bellman Operator causes TD algorithms to overestimate the
value function — Slow convergence!®
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Q-Learning (QL)- Watkins and Dayan (1992)

@ QLlearns Q* from transition tuples (s, a, r, s"), by iteratively applying the optimal Bellman
operator:
Q(s,a) < (1-)Q(s,a) + a(r; + ymax Q(s', a)).
ul
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Q-Learning (QL)- Watkins and Dayan (1992)

@ QLlearns Q* from transition tuples (s, a, r, "), by iteratively applying the optimal Bellman
operator:
Q(s,a) < (1-a)Q(s,a) +a(r, +ymax Q(s',a’)).
a/

o The max term causes QL to overestimate the next-state Q-values.
— slow convergence and poor performance’.

1yan Hasselt 2010.
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Q-Learning (QL)- Watkins and Dayan (1992)

@ QLlearns Q* from transition tuples (s, a, r, "), by iteratively applying the optimal Bellman
operator:
Q(S, a) < (1 - O[)Q(S, 61) + a(rt + ymax Q(sla CI/)).

e The max term causes QL to overestimate the next-state Q-values.
- slow convergence and poor performance’.

o Overestimation - main reason to the divergence of QL-based algorithms?.

1Van Hasselt 2010.
2Van Hasselt et al. 2018.
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Example - Chain MDP

Consider the following Chain-MDP where p; < 0.

re~N(pi,0)
°
‘ & 0 0
, . r= r= .
Dl : ® ® N Cl
Left Right
{ 2

Figure: The Chain MDP
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Example - Chain MDP

{8
| & 0 0
- . r = Tr= o
Dl : @ @ » Cl
Left Right
r~N(-05,1)
L 2

Optimal policy:
Pick “Right” action from A'. Forever!
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Example - Chain MDP
. I .' r=0
D* 1 Lon
rNN'(—O.S.l)'

o) ||

Q(B,a;) —081
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Q(B,a;) —03 Q(ARighty [ 0 ] =
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Q(B,ag) That took some time...
Update Rule: - Q(s, @) < (1 — @) Q(s, a) + a(r; + ymax Q(s', ')
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Slow Convergence

— QL

Correct action rate

0 2000 4000 6000 8000 10000
Episode

Slow convergence of QL over the chain MDBP, available actions at state B—10. r(B,-) ~ N (-0.2,1)
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General Optimism

Oren Peer

Gates Of Hell!

\ Good stuff

»

A Cloud of
Uncertainty

“I've seen some
good stuff
behind that

door...

It’s GOOD!”

Y

Bad stuff

ML Seminar - June 2021

10/41



QL Overestimation

@ QL overestimates the Q-function. This can be bad sometimes.
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QL Overestimation

@ QL overestimates the Q-function. This can be bad sometimes.

@ The problem gets worse when dealing with function approximators:

e Target Approximation Error (TAE) [Thrun and Schwartz 1993].
o Neural Networks: DeepRL - ‘The Deadly Triad’ [Van Hasselt et al. 2018].
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Double Q-Learning (DQL)- Van Hasselt (2010)

@ Avoiding overestimation, DQL combines two Q-estimators: Q* and Q?, each updated over a
unique subset of gathered experience.
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Double Q-Learning (DQL)- Van Hasselt (2010)

@ Avoiding overestimation, DQL combines two Q-estimators: Q* and Q?, each updated over a
unique subset of gathered experience.

@ Two-Phased update step of estimator A:
(1) & - argmax Q(se1, @)
al

(2) QA(SnClt) < (1- Oét)QA(Sn a)
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Double Q-Learning (DQL)- Van Hasselt (2010)

@ Avoiding overestimation, DQL combines two Q-estimators: Q* and Q?, each updated over a
unique subset of gathered experience.

@ Two-Phased update step of estimator A:
(1) & - argmax Q(se1, @)
al

(2) QA(SnClt) < (1- Oét)QA(Sn a)

+ ot (rt + ’YQB (St+1, &2))

For updating estimator B, the indices A and B are flipped.
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Double Q-Learning (DQL)- Van Hasselt (2010)

DQL combines two Q-estimators: Q* and Q?, each updated over a unique subset of gathered
experience. UPDATE_A ~ Bern(p = 0.5).

Algorithm 1: Double Q-Learning (DQL)
Initialize: Two Q-tables: Q" and Q% .
fort=1,...,Tdo
Choose action a; = argmax, [Q"(s:, a) + Q®(s:, a)]
a; = explore(a;) ; // e.g. e-greedy
Se+1, T < env.step(s:, a;)
if UPDATE_A.Sample() = 1 then
Define a* = argmax, Q" (5111, a)
L Q' (st, ar) < Q (s, ar) + au (e +vQ (8041, a™) = Q' (51, ar))
else
L // UPDATE.B

Define b* = arg max, Q® (521, @)
Q°(st,ar) < Q°(st,ar) + e (1o + 7 Q" (5041, b") = Q% (51, ar))

Result: {Q4, Q")
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Double Q-Learning (DQL)- Van Hasselt (2010)

@ DQL mitigates the overestimation. But, results with underestimation.
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Example - Chain MDP

Consider the following Chain-MDP where u; > 0

re~N(pi,0)
°
‘ & 0 0
, . r= r= .
Dl : ® ® N Cl
Left Right
{ 2

Figure: The Chain MDP
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General Pessimism

Gates Of Valhalla!
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Good stuff ‘[ m 3

A Y~ — “!,‘x

“I've seen some A Cloud of

bad stuff behind .
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It sucks!”

Y

Bad stuff
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QL, DQL and the ‘nature of the environment’

o QL overestimates — ‘optimistic’. Hence, performs well in environments where optimism is
beneficial!
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QL, DQL and the ‘nature of the environment’

@ QL overestimates — ‘optimistic’. Hence, performs well in environments where optimism is
beneficial!

@ DQL underestimates — ‘pessimistic’. Hence, performs well in environments where
pessimism is beneficial!

@ In the general case, the performance of QL and DQL is highly dependent on the
‘environment nature’.

What if we do not have prior knowledge about the environment nature?
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QL, DQL and the ‘nature of the environment’

Environment that involves both ‘optimistic’ and ‘pessimistic’ scenarios.

Cl'

Figure: Meta Chain MDP
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QL, DQL and the ‘nature of the environment’

n<o Average across different us u>0
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Statistical framework - Estimating the Maximum Expected Value

The future reward is a random variable, R™(s) = Y7207 1¢|so = s, a ~ 7(s;).

Denoting: (Xi,...,X;) =2 (R™(Sts1,a1), - -+, R™(St11, Am) ),
(/'(‘l, ey Nm) = (Qﬂ-(s[+l7 al)a ey QW(SZ+l-am)))

The next-state value used by QL is determined by:

Q" (St+1,0") = p” = max pig.

Oren Peer

ML Seminar - June 2021

20/41



Statistical framework - Estimating the Maximum Expected Value

Problem: estimate the maximal expected value of m independent random variables
{X1,..., X}, with means {p1,. .., ftm}:

maxE[X;] = max g = p”* |
a a

Based on N i.i.d. samples from the same distribution as {X}/";: {S};

X, X, X
N ‘ ‘ - ‘
Oren Peer ML Seminar - June 2021
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Single Estimator and Double Estimator

Single Estimator (SE): Use the maximal empirical mean of the samples.

0
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Single Estimator and Double Estimator

Proposition [Smith and Winkler 2006]

SE is proved to overestimate y.*.
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Single Estimator and Double Estimator

Proposition [Smith and Winkler 2006]

SE is proved to overestimate y.*.

Proof:

o Leta” € argmaxe[p] fha, and @* = arg MaxXge[ ] fla
o SEisunbiased: E 4+ | = fia
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Single Estimator and Double Estimator

Proposition [Smith and Winkler 2006]

SE is proved to overestimate y.*.

Proof:

o Leta” carg maXge[m] Ha» and a* = arg maXge[m] fiq
o SEisunbiased: E 4+ | = fia
@ Then: [ig« < fig«. And also pig — jige < prar — flg*
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Single Estimator and Double Estimator

Proposition [Smith and Winkler 2006]

SE is proved to overestimate y.*.

Proof:
o Leta” € argmaxe[p] fha, and @* = arg MaxXge[ ] fla
o SEisunbiased: E[pg] = fiar
@ Then: [ig« < fig«. And also pig — jige < prar — flg*
@ Monotonicity of the expectation: E [j14+ — fige | <E[prar — figr] =0 ]
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Single Estimator and Double Estimator

Proposition [Smith and Winkler 2006

SE is proved to over

RL Statistical Framework

Proof:

@ Leta* € argmax Q-Learning Single-Estimator
o SEis unbiased:

@ Then: jig < fig
@ Monotonicity o
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Single Estimator and Double Estimator

Double Estimator (DE): The samples of each random variable a € [ m] are split into two disjoint,

equal-sized subsets S((ll) and Séz)
X, X X

2-phase estimation process:
ML Seminar - June 2021 24/41
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Single Estimator and Double Estimator

Double Estimator (DE): The samples of each random variable a € [ m] are split into two disjoint,

equal-sized subsets Sél) and Sflz)
X, X X

2-phase estimation process:
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o The index &* is estimated using S1: &* = argmax,, /i%".

@ The mean of X, is estimated using S( ) = (1?4

| =

DE is proved to underestimate ;.*.3

NS

3Van Hasselt 2010.
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Single Estimator and Double Estimator

Double Estimator (DE): The samples of each random variable a € [ m] are split into two disjoint,

equal-sized subsets s and &)
2-phase estimation

. Axoe
o The index a* is RL Statistical Framework

@ The mean of X,

Q-Learning Single-Estimator

Double Q-Learning Double-Estimator ﬂ
LN J

DE is proved to und

3Van Hasselt 2010.
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Ensemble Estimator (EE)

Ensemble Estimator (EE): The samples of each random variable a € [ m] are split into K disjoint,
K
equal-sized subsets {S(l) } .

@ Jin

2-phase estimation process:

X X Xm

w{ @@ O

N/K {

w{ P& I
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Ensemble Estimator (EE)

Ensemble Estimator (EE): The samples of each random variable a € [ m] are split into K disjoint,
N K
equal-sized subsets {S,(j) } )
i=
2-phase estimation process:

o Asingle arbitrary set k € [K] is used to estimate the index: a* = argmax,, Ao,

X; X, Xom
we{ @A (D
N/K {

w{ P& I

Oren Peer
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Ensemble Estimator (EE)

Ensemble Estimator (EE): The samples of each random variable a € [ m] are split into K disjoint,
N K
equal-sized subsets {S,(ll) } )
i=
2-phase estimation process:

o Asingle arbitrary set k € [K] is used to estimate the index: a* = argmax,, Ao,
o the mean is estimated using the rest of the ensemble:

X, X, Xom
A% s ~ ()
e * =27 Zjeknk Mo w{ @@ O
N/K {
: oo

w{ P& I

Oren Peer

ML Seminar - June 2021 25/41



Ensemble Estimator (EE)

Ensemble Estimator (EE): The samples of each random variable a € [ m] are split into K disjoint,
N K
equal-sized subsets {S,(ll) } )
i=
2-phase estimation process:

o Asingle arbitrary set k € [K] is used to estimate the index: a* = argmax,, Ao,
o the mean is estimated using the rest of the ensemble:

v a1 N0 XX X
fiee = 71 Zjerxn Har wi{ @@ )
N/K {
: XX
Note that K = 2 < DE=EE *

w{ P& I

Oren Peer
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Ensemble Estimator (EE)

Ensemble Estimatol

equal-sized subsets
2-phase estimation

@ Asingle arbitra
@ the mean is est

I |
MEE = X1 Zje[K

Note that K =2 4

RL

Q-Learning

Statistical Framework

Single-Estimator

Double Q-Learning

Double-Estimator

Ensemble
Bootstrapped Q-
Learning

split into K disjoint,

Ensemble-Estimator

Oren Peer

ala "«
X, X,
o 6O
o I
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Weighted Double Estimator

Weighted Double Estimator (W-DE): similar to DE, BUT, the samples of each random variable

a € [m] are split into two disjoint, not-equal-sized subsets s and S, where |S§1)| < |sz2) |-
2-phase estimation process:

Xm

{ ()
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Weighted Double Estimator (W-DE): similar to DE, BUT, the samples of each random variable

a € [m] are split into two disjoint, not-equal-sized subsets s and S, where |S§1)| < |sz2) |-
2-phase estimation process:

o The index a* is estimated using S(V): @* = argmax,, adh.

Xm
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Weighted Double Estimator

Weighted Double Estimator (W-DE): similar to DE, BUT, the samples of each random variable

a € [m] are split into two disjoint, not-equal-sized subsets s and S, where |S§1)| < |sz2) |-
2-phase estimation process:

o The index a* is estimated using S(V): @* = argmax,, u(l)

@ The mean of X;. is estimated using S ): fivog = 1P 4

=x|=

"
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Weighted Double Estimator

Weighted Double Estimator (W-DE): similar to DE, BUT, the samples of each random variable

a € [m] are split into two disjoint, not-equal-sized subsets s and S, where |S§1)| < |sz2) |-
2-phase estimation process:

o The index a* is estimated using S(V): @* = argmax,, u(l)

@ The mean of X;. is estimated using S&* L = (1)

X, X
{ A
W-DE underestimates p* same as DE. } U U
LN ]

Oren Peer

=x|=
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Weighted Double Estimator < Ensemble Estimator

Proposition - Proxy Identity

Ak A%
HEE = Hw.DE

W-DE offers much easier formulation for analysis! Yet less appealing for RL.
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Weighted Double Estimator < Ensemble Estimator

Proposition - SNR and suboptimal ratio

Let X = (X, X2) ~N ((p1,12)", 0°I) be a Gaussian random vector such that 1, > p, and let

A = p1 = pi. Also, define the signal to noise ratio as SNR = — /?/N and let /15y p be a W-DE that uses
N, samples for index estimation. Then, for any fixed even sample-size N > 10 and any NV, that
minimizes MSE(/i§y_pg ), it holds that:

(1) AsSNR - oo, N — 1
(2) AsSNR - 0, N} - 1
(3) Forany o and A, it holds that N < N/2.
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Weighted Double Estimator < Ensemble Estimator

Proposition - SNR and suboptimal ratio

Let X = (X, X2) ~N ((p1,12)", 0°I) be a Gaussian random vector such that 1, > p, and let

A = p1 = pi. Also, define the signal to noise ratio as SNR = — /?/N and let /15y p be a W-DE that uses
N, samples for index estimation. Then, for any fixed even sample-size N > 10 and any NV, that
minimizes MSE(/i§y_pg ), it holds that:

(1) AsSNR - oo, N — 1
(2) AsSNR - 0, N} - 1 PG
(3) Forany o and A, it holds that N < N/2.

%
_-—
=
&
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Weighted Double Estimator
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X —— 6 Gaussians
0.061 == Double Estimator, r=2
0.05 1
Ll
g
0.04 1
0.03 1
0.02 1
0.01 T T T T T . : -
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Figure: Left: MSE as function of N;. Right: Optimal split-ratio as function of SNR
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Ensemble Estimator (EE)

@ We show that when facing LOW SNR (variables are hard to distinguish) it is MSE-beneficial
to use large ensembles.
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Ensemble Estimator (EE)

@ We show that when facing LOW SNR (variables are hard to distinguish) it is MSE-beneficial
to use large ensembles.

@ RLis considered as noisy environment, hence we expect large EE-like algorithms will reduce
the MSE of the Q-function estimation.
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Ensemble-Bootstrapped Q-Learning (EBQL)

Algorithm 2: Ensemble Bootstrapped Q-Learning (EBQL)

Initialize: K Q-tables: {Q"}i1

fort=1,...,Tdo

Choose actiona, = argmax, [Y 1, Q'(s:, a)]

a; = explore(a;) ; // e.g. e-greedy
St+1, It < env.step(sy, a;)

Sample an ensemble member to update: k; ~ U ([K])

Define a* = argmax, Q" (s,,1, a)

Q% (s, ar) < (1—ar) Q¥ (sp,ar) +ay (1 + v Q™ (5101, a%))

Result: {Q’ }il

Where QWi (5,1, a%) = &5 Sjerxvk @ (St41,a@%).
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Short Summary

RL Statistical Framework
Q-Learning Single-Estimator
Double Q-Learning Double-Estimator
Ensemble
Bootstrapped Q- Ensemble-Estimator
Learning
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Results: Meta Chain MDP

100 — QL —— EBQL_K=10
0.6 - DQL EBQL_K=15
- EBQL_K=3 —— EBQL_K=25
90 — EBQL_K=7 === Unbiased Q Estimator
o 0.4
c 3
5 80 -2 0.2
S 2
= 70 g 1.
§ ] 0.0
5 o
60 ]
— QL —— EBQL_K=10 —0.2
-— DQL EBQL_K=15
501 —— EBQL_K=3 —— EBQL_K=25
—— EBQL K=7 —0.4 1
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Episode Episode

Figure: EBQL Vs. QL and DQL
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Other Ensemble-based works

@ Avg. DQN - Anschel, Baram, and Shimkin 2017 - Use the entire ensemble to approximate the
next-state Q-function (extension of QL):

Oren Peer ML Seminar - June 2021 34/41



Other Ensemble-based works

@ Avg. DQN - Anschel, Baram, and Shimkin 2017 - Use the entire ensemble to approximate the
next-state Q-function (extension of QL):

) . 1 .
Vie[K], TDug(si,ar)=r +’ym2x[? > Qk(sm,a)] - Q' (s, ar)
%

Oren Peer ML Seminar - June 2021 34/41



Other Ensemble-based works

@ Avg. DQN - Anschel, Baram, and Shimkin 2017 - Use the entire ensemble to approximate the
next-state Q-function (extension of QL):

. i 1 i
Vie[K], TDug(si,ar)=r+ fymgx[? > Q (st41, a)] - Q' (s, ar)
3

o Reduces the variance of the target approximation error.

Oren Peer ML Seminar - June 2021 34/41



Other Ensemble-based works

@ Avg. DQN - Anschel, Baram, and Shimkin 2017 - Use the entire ensemble to approximate the
next-state Q-function (extension of QL):

. i 1 i
Vie[K], TDug(si,ar)=r+ fymgx[? > Q (st41, a)] - Q' (s, ar)
3

o Reduces the variance of the target approximation error.
o Still Overestimates.

Oren Peer ML Seminar - June 2021 34/41



Other Ensemble-based works

@ Avg. DQN - Anschel, Baram, and Shimkin 2017 - Use the entire ensemble to approximate the
next-state Q-function (extension of QL):

) . 1 .
Vie[K], TDug(si,ar)=r +’ym2x[? > Qk(sm,a)] - Q' (s, ar)
%

o Reduces the variance of the target approximation error.
o Still Overestimates.

@ MaxMin Q-Learning, Lan et al. 2020 - Construct a ‘pessimist’ target:
Qmin(sa a) = minKe[K] Qk(sa (l), va.
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Other Ensemble-based works

@ Avg. DQN - Anschel, Baram, and Shimkin 2017 - Use the entire ensemble to approximate the
next-state Q-function (extension of QL):
. i 1 i
Vie[K], TDuyg(si,ar)=ri+ 'ymax[? > Q (st41, a)] - Q' (s, ar)
a k

o Reduces the variance of the target approximation error.
o Still Overestimates.

@ MaxMin Q-Learning, Lan et al. 2020 - Construct a ‘pessimist’ target:
Qmin(s, @) = mingx] Q¥(s, a), Va.

Vie[K], TDfmem(st,ut) = It +7ymax Qmin(St+1,a) - Qi(st,at)
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Results: Meta Chain MDP

Q function bias
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Figure: EBQL Vs. QL, DQL, Avg. QL and MaxMin-QL
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Arcade Learning Environment (ALE) - Atari

SAHEAD
050
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Arcade Learning Environment (ALE) - Atari

Figure: Atari Console: Input image-size: 160X210 Pixels, 18 discrete actions defined by the joystick
controller.
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Results: Atari

—— EBQL (ours)
v 4] — DQN
S —— Double-DQN
0 ENSM-DQN
° —— Rainbow
&3]
©
S 2
c
c
O 1
ko]
()
=
0.
0 10 20 30 40 50

Steps [millions]

Figure: Comparison of the DQN, DDQN, Rainbow* and EBQL agents on 11 random ATARI environments.

4Hessel et al. 2018.
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Summary and future work

@ QL - Overestimates. Might be harmful sometimes.
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Summary and future work

@ QL - Overestimates. Might be harmful sometimes.

@ DQL - solves overestimation. Results with underestimating. Widely used across SOTA
algorithms.

@ We can do (MSE) better! - EBQL - reduces the MSE of next-state Q-function using better
‘budget’ split between index and mean estimations.

Future work:
o Improve DQL-based SOTA algorithms using EBQL.
e Convergence, rates, optimal split ratio.
@ Dynamic split-ratio using values+variance estimations (we already have an ensemble..)
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Thank You.
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