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Reinforcement learning (RL)

State – st ∈ S.

Action – at ∈ A.

Scalar reward – rt .

Transition probability – P(st+1∣st ,a).

Discount factor γ ∈ [0,1].

Policy – π ∶ S → A, how to act in a given state.

Value – vπ(s) = Eπ [∑∞t=0 γ
t r(st)∣s0 = s].

Q-function – Qπ(s,a) = Eπ [∑∞t=0 γ
t rt(st ,at)∣s0 = s,a0 = a]
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Motivation

Value based methods: learn the value of each state→ Infer optimal policy.

Temporal Difference (TD) methods - Bootstrapping using the next state(s) values.

Tabular methods - Q-Learning, SARSA...

Large state spaces and large/continues state/action spaces,

↰Function approximations (e.g., Deep Q-Networks- DQN).
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Value based methods: learn the value of each state→ Infer optimal policy.

Temporal Difference (TD) methods - Bootstrapping using the next state(s) values.

Tabular methods - Q-Learning, SARSA...

Large state spaces and large/continues state/action spaces,

↰Function approximations (e.g., Deep Q-Networks- DQN).

Bootstrapping using the Optimal Bellman Operator causes TD algorithms to overestimate the
value function→ Slow convergence!/
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Q-Learning (QL)– Watkins and Dayan (1992)

QL learns Q∗ from transition tuples (s,a, r, s′), by iteratively applying the optimal Bellman
operator:

Q(s,a)← (1 − α)Q(s,a) + α(rt + γmax
a′

Q(s′,a′)).

The max term causes QL to overestimate the next-state Q-values.
→ slow convergence and poor performance.

Overestimation - main reason to the divergence of QL-based algorithms .
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operator:

Q(s,a)← (1 − α)Q(s,a) + α(rt + γmax
a′

Q(s′,a′)).

The max term causes QL to overestimate the next-state Q-values.
→ slow convergence and poor performance1.

Overestimation - main reason to the divergence of QL-based algorithms2.

1Van Hasselt 2010.
2Van Hasselt et al. 2018.
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Example - Chain MDP

Consider the following Chain-MDP where µi < 0.

Figure: The Chain MDP

Oren Peer ML Seminar - June 2021 7 / 41



Example - Chain MDP

Oren Peer ML Seminar - June 2021 8 / 41



Example - Chain MDP

Oren Peer ML Seminar - June 2021 8 / 41



Example - Chain MDP

Oren Peer ML Seminar - June 2021 8 / 41



Example - Chain MDP

Oren Peer ML Seminar - June 2021 8 / 41



Example - Chain MDP

Oren Peer ML Seminar - June 2021 8 / 41



Example - Chain MDP

Oren Peer ML Seminar - June 2021 8 / 41



Example - Chain MDP

Oren Peer ML Seminar - June 2021 8 / 41



Example - Chain MDP

Oren Peer ML Seminar - June 2021 8 / 41



Slow Convergence

Slow convergence of QL over the chain MDP, available actions at state B – 10. r(B, ⋅) ∼ N (−0.2,1)
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General Optimism
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QL Overestimation

QL overestimates the Q-function. This can be bad sometimes.

The problem gets worse when dealing with function approximators:

Target Approximation Error (TAE) [Thrun and Schwartz 1993].

Neural Networks: DeepRL - ‘The Deadly Triad’ [Van Hasselt et al. 2018].
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Double Q-Learning (DQL)– Van Hasselt (2010)

Avoiding overestimation, DQL combines two Q-estimators: QA and QB, each updated over a
unique subset of gathered experience.

Two-Phased update step of estimator A:

(1) â∗A = argmax
a′

QA(st+1,a
′)

(2) QA(st ,at)← (1 − αt)QA(st ,at)
+ αt (rt + γQB (st+1, â

∗
A))

For updating estimator B, the indices A and B are flipped.
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Double Q-Learning (DQL)– Van Hasselt (2010)

DQL combines two Q-estimators: QA and QB, each updated over a unique subset of gathered
experience. UPDATE A ∼ Bern(p = 0.5).

Algorithm 1: Double Q-Learning (DQL)

Initialize: Two Q-tables: QA and QB , s0.
for t = 1, . . . ,T do

Choose action at = argmaxa [QA(st ,a) +QB(st ,a)]
at = explore(at) ; // e.g. ε-greedy

st+1, rt ← env.step(st ,at)
if UPDATE A.Sample() = 1 then

Define a∗ = argmaxa QA(st+1,a)
QA(st ,at)← QA(st ,at) + αt (rt + γQB(st+1,a∗) −QA(st ,at))

else
// UPDATE B

Define b∗ = argmaxa QB(st+1,a)
QB(st ,at)← QB(st ,at) + αt (rt + γQA(st+1,b∗) −QB(st ,at))

Result: {QA,QB}
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Double Q-Learning (DQL)– Van Hasselt (2010)

DQL mitigates the overestimation. But, results with underestimation.
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Example - Chain MDP

Consider the following Chain-MDP where µi > 0

Figure: The Chain MDP
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General Pessimism
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QL, DQL and the ‘nature of the environment’

QL overestimates→ ‘optimistic’. Hence, performs well in environments where optimism is
beneficial!

DQL underestimates→ ‘pessimistic’. Hence, performs well in environments where
pessimism is beneficial!

In the general case, the performance of QL and DQL is highly dependent on the
‘environment nature’.
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QL, DQL and the ‘nature of the environment’

QL overestimates→ ‘optimistic’. Hence, performs well in environments where optimism is
beneficial!

DQL underestimates→ ‘pessimistic’. Hence, performs well in environments where
pessimism is beneficial!

In the general case, the performance of QL and DQL is highly dependent on the
‘environment nature’.

What if we do not have prior knowledge about the environment nature?
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QL, DQL and the ‘nature of the environment’

Environment that involves both ‘optimistic’ and ‘pessimistic’ scenarios.

Figure: Meta Chain MDP
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QL, DQL and the ‘nature of the environment’
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Statistical framework - Estimating the Maximum Expected Value

The future reward is a random variable, Rπ(s) = ∑∞t=0 γ
t rt ∣s0 = s,a ∼ π(st).

Denoting: (X1, . . . ,Xm) ≜ (Rπ(st+1,a1), . . . ,Rπ(st+1,am)),
(µ1, . . . , µm) ≜ (Qπ(st+1,a1), . . . ,Qπ(st+1.am)),

The next-state value used by QL is determined by:

Q∗(st+1,a
∗) = µ∗ = max

a
µa.
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Statistical framework - Estimating the Maximum Expected Value

Problem: estimate the maximal expected value of m independent random variables
{X1, . . . ,Xm}, with means {µ1, . . . , µm}:

max
a

E [Xa] = max
a
µa ≜ µ∗ ,

Based on N i.i.d. samples from the same distribution as {X}m
i=1: {S}m

i=1
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Single Estimator and Double Estimator

Single Estimator (SE): Use the maximal empirical mean of the samples.

µ̂∗SE ≜ max
a
µ̂a(Sa) = max

a

1
N

N

∑
j=1

Sa (j) .
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Single Estimator and Double Estimator

Proposition [Smith and Winkler 2006]
SE is proved to overestimate µ∗.

Let a∗ ∈ arg maxa∈[m] µa, and â∗ = arg maxa∈[m] µ̂a

SE is unbiased: E [µa∗] = µ̂a∗

Then: µ̂a∗ ≤ µ̂â∗ . And also µa∗ − µ̂â∗ ≤ µa∗ − µ̂a∗

Monotonicity of the expectation: E [µa∗ − µ̂â∗] ≤ E [µa∗ − µ̂a∗] = 0 ∎
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Monotonicity of the expectation: E [µa∗ − µ̂â∗] ≤ E [µa∗ − µ̂a∗] = 0 ∎
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Single Estimator and Double Estimator

Double Estimator (DE): The samples of each random variable a ∈ [m] are split into two disjoint,

equal-sized subsets S(1)
a and S(2)

a

2-phase estimation process:

The index â∗ is estimated using S(1): â∗ = argmaxa µ̂
(1)
a .

The mean of Xâ∗ is estimated using S(2)
â∗ : µ̂∗DE = µ̂(2)

â∗ .
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The index â∗ is estimated using S(1): â∗ = argmaxa µ̂
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Ensemble Estimator (EE)

Ensemble Estimator (EE): The samples of each random variable a ∈ [m] are split into K disjoint,

equal-sized subsets {S(i)
a }

K

i=1
.

2-phase estimation process:

A single arbitrary set k̃ ∈ [K ] is used to estimate the index: â∗ = argmaxa µ̂
(k̃)
a .

the mean is estimated using the rest of the ensemble:

Oren Peer ML Seminar - June 2021 25 / 41



Ensemble Estimator (EE)

Ensemble Estimator (EE): The samples of each random variable a ∈ [m] are split into K disjoint,

equal-sized subsets {S(i)
a }

K

i=1
.

2-phase estimation process:

A single arbitrary set k̃ ∈ [K ] is used to estimate the index: â∗ = argmaxa µ̂
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Weighted Double Estimator

Weighted Double Estimator (W-DE): similar to DE, BUT, the samples of each random variable

a ∈ [m] are split into two disjoint, not-equal-sized subsets S(1)
a and S(2)

a , where ∣S(1)
a ∣ < ∣S(2)

a ∣.
2-phase estimation process:

The index â∗ is estimated using S(1): â∗ = argmaxa µ̂
(1)
a .

The mean of Xâ∗ is estimated using S(2)
â∗ : µ̂∗W-DE = µ̂(2)

â∗ .
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Weighted Double Estimator

Weighted Double Estimator (W-DE): similar to DE, BUT, the samples of each random variable

a ∈ [m] are split into two disjoint, not-equal-sized subsets S(1)
a and S(2)

a , where ∣S(1)
a ∣ < ∣S(2)

a ∣.
2-phase estimation process:

The index â∗ is estimated using S(1): â∗ = argmaxa µ̂
(1)
a .

The mean of Xâ∗ is estimated using S(2)
â∗ : µ̂∗W-DE = µ̂(2)

â∗ .

W-DE underestimates µ∗ same as DE.
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Weighted Double Estimator ⇐⇒ Ensemble Estimator

Proposition - Proxy Identity
µ̂∗EE = µ̂∗W-DE

W-DE offers much easier formulation for analysis! Yet less appealing for RL.
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Weighted Double Estimator ⇐⇒ Ensemble Estimator

Proposition - SNR and suboptimal ratio

Let X = (X1,X2) ∼ N ((µ1, µ2)T , σ2I2) be a Gaussian random vector such that µ1 ≥ µ2 and let
∆ = µ1 − µ2. Also, define the signal to noise ratio as SNR = ∆

σ/√N
and let µ̂∗W-DE be a W-DE that uses

N1 samples for index estimation. Then, for any fixed even sample-size N > 10 and any N∗
1 that

minimizes MSE(µ̂∗W-DE), it holds that:

(1) As SNR→∞, N∗
1 → 1

(2) As SNR→ 0, N∗
1 → 1

(3) For any σ and ∆, it holds that N∗
1 < N /2.
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σ/√N
and let µ̂∗W-DE be a W-DE that uses

N1 samples for index estimation. Then, for any fixed even sample-size N > 10 and any N∗
1 that

minimizes MSE(µ̂∗W-DE), it holds that:

(1) As SNR→∞, N∗
1 → 1

(2) As SNR→ 0, N∗
1 → 1

(3) For any σ and ∆, it holds that N∗
1 < N /2.

Oren Peer ML Seminar - June 2021 28 / 41



Weighted Double Estimator

Figure: Left: MSE as function of N1. Right: Optimal split-ratio as function of SNR
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Ensemble Estimator (EE)

We show that when facing LOW SNR (variables are hard to distinguish) it is MSE-beneficial
to use large ensembles.

RL is considered as noisy environment, hence we expect large EE-like algorithms will reduce
the MSE of the Q-function estimation.
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Ensemble-Bootstrapped Q-Learning (EBQL)

Algorithm 2: Ensemble Bootstrapped Q-Learning (EBQL)

Initialize: K Q-tables: {Qi}K

i=1
for t = 1, . . . ,T do

Choose actionat = argmaxa [∑K
i=1 Qi(st ,a)]

at = explore(at) ; // e.g. ε-greedy

st+1, rt ← env.step(st ,at)
Sample an ensemble member to update: kt ∼ U ([K ])
Define â∗ = argmaxa Qkt (st+1,a)
Qkt (st ,at)← (1 − αt)Qkt (st ,at) +αt (rt + γQEN∖kt (st+1, â∗))

Result: {Qi}K

i=1

Where QEN/kt (st+1, â∗) = 1
K−1 ∑j∈[K ]/kt

Qj(st+1, â∗).
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Short Summary
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Results: Meta Chain MDP

Figure: EBQL Vs. QL and DQL
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Other Ensemble-based works

Avg. DQN - Anschel, Baram, and Shimkin 2017 - Use the entire ensemble to approximate the
next-state Q-function (extension of QL):

∀i ∈ [K ] , TDi
Avg(st ,at) = rt + γmax

a
[ 1

K
∑

k

Qk(st+1,a)] −Qi(st ,at)

Reduces the variance of the target approximation error.
Still Overestimates.

MaxMin Q-Learning, Lan et al. 2020 - Construct a ‘pessimist’ target:
Qmin(s,a) = minK ∈[K ] Qk(s,a), ∀a.
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MaxMin Q-Learning, Lan et al. 2020 - Construct a ‘pessimist’ target:
Qmin(s,a) = minK ∈[K ] Qk(s,a), ∀a.

∀i ∈ [K ] , TDi
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Qmin(st+1,a) −Qi(st ,at)
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Results: Meta Chain MDP

Figure: EBQL Vs. QL, DQL, Avg. QL and MaxMin-QL
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Arcade Learning Environment (ALE) - Atari
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Arcade Learning Environment (ALE) - Atari

Figure: Atari Console: Input image-size: 160X210 Pixels, 18 discrete actions defined by the joystick
controller.
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Results: Atari

Figure: Comparison of the DQN, DDQN, Rainbow4 and EBQL agents on 11 random ATARI environments.

4Hessel et al. 2018.
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Summary and future work

QL - Overestimates. Might be harmful sometimes.

DQL - solves overestimation. Results with underestimating. Widely used across SOTA
algorithms.

We can do (MSE) better! - EBQL - reduces the MSE of next-state Q-function using better
‘budget’ split between index and mean estimations.

Improve DQL-based SOTA algorithms using EBQL.

Convergence, rates, optimal split ratio.

Dynamic split-ratio using values+variance estimations (we already have an ensemble..)
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Thank You.
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