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Motivation: learning without a random sample

Source Hospital

+ » No direct access to patients records
"' L ®» No random sample

= 1 ] » Access only via database counting queries

Can we successfully perform learning tasks under this setting?



Problem Setting

» |nput: Dataset of domain examples
No random sample from target distribution

Acgess to the target distribution only via weight queries

oal: Reweight the dataset to match the target distribution

» The reweighted dataset can be used

for various machine learning tasks



A structure over the input dataset

» Which weight queries are allowed?
® |nput: A binary tree whose leaves are the dataset examples.
®» Fach node represents a queryable subset of the domain.

» A péning of the input tree induces a partition of the domain.
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Main result

» A new active querying algorithm (AWP) for reweighting the

source dataset to approximate the target distribution.

» AWP finds a small pruning that defines a reweighting of the

sou/rée dataset.

Theorem: Let K be the requested pruning size. AWP finds a near-

optimal reweighting of the source data set for the target distribution.

» The optimality approximation factor is O(log(K))

» The number of weight queries is 0(K3)
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The AWP Algorithm

» We define a new quantity called discrepancy that

measures the weight mismatch on a subset of the domain.

» AWP uses adaptive sampling of weight queries and a new

discrepancy estimator.

»/ AWP runs an iterative top-down procedure to achieve a

low discrepancy pruning of the input tree.



The AWP Algorithm

» Phase 1:

» Select a node in current pruning;

» Query the weight of a random example under this node;
» Repeat until identifying a relevant node to split.

o000 -~ 0000



The AWP Algorithm

» Phase 2: Replace the node found in phase 1 with ifs
children; This increases the pruning size by 1.

®» Repeat both phases until a stopping condition is reached.
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Experiments
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Summary

®» A novel setting in which weight queries are the
only access to the target distribution.

» The AWP algorithm finds a reweighting of the
taset by finding a suitable pruning.

Theoretical guaranties for the quality of the output
reweighting and the number of weight queries.

®» Fxperiments demonstrate the success of AWP.
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Thank you
for listening!




