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Abstract

Problem setting: requests repeatedly arrive over
time and, for each request, a decision maker needs to
take an action that generates a reward and consumes
resources.
Our contribution: we introduce the regularized
online allocation problem, a variant of online allo-
cation problem that includes a non-linear regularizer
acting on the total resource consumption
Our Goal: The objective is to simultaneously max-
imize total rewards and the value of the regularizer
subject to the resource constraints.

Problem Formulation

• Finite horizon with T time periods
•Resources j = 1...m with capacities ρjT
•Online Process: At a specific time period t:
• A request arrives with revenue function ft, and
consumption matrix bt
• Choose action xt from action space X
• Generates a revenue ft(xt)
• Consumes resources btxt
•Challenge: Information about the future
requests is not known in advance
•Offline problem:

(O) : max
x:xt∈X

T∑
t=1

ft(xt) + Tr

 1
T

T∑
t=1

btxt


s.t.

T∑
t=1

btxt ≤ Tρ ,

where r is a concave regularizer on the
consumption.
•Regularizer: While maximizing the total
revenue, we also would like to impose certain
properties of the allocation, such as fairness among
advertisers, load balancing for machine scheduling,
etc.

Examples of the Regularizer r

•Max-min fairness on the consumption:
r(s) = λminj(sj/ρj)
•Max-min fairness on the reward (Santa
Claus Fairness): we can introducing auxiliary
budget constraint on the reward and use the above
fairness on the consumption
•Load balancing on the consumption:
r(s) = −λminj(sj/ρj)
•Penalty when under-delivering:
r(s) = −λ∑j cj max(sj − tj, 0)
•Penalty when consumption is above a certain
level: r(s) = −λ∑j cj max(tj − sj, 0)

Lagrangian Duality to the Rescue

Introducing Lagrange multipliers µ ≥ 0 for resource
constraints 1

T

∑T
t=1 btxt = a ≤ ρ where a is an auxil-

iary variable (target consumption), we obtain the dual
problem:
D(µ)

= max
xt∈X ,a≤ρ

T∑
t=1

ft(xt) + T · r(a) + µ>

Ta− T∑
t=1

btxt


=

T∑
t=1

(
max
xt∈X
{f (xt)− µ>btxt}

)
+ T max

a≤ρ
{r(a) + µ>a}

Challenge # 1: How do we make decisions and
update the target consumption?
• If “optimal” dual variables µ∗ are known, we can
take actions to maximize the dual-variable adjusted
reward and update the target consumption:

xt = argmax
x∈Xt

{
ft(x)− (µ∗)>btx

}
at = argmax

a≤ρ
{r(a) + (µ∗)>a}

• ...but we DO NOT know µ∗ in advance
Challenge #2: How do we compute good dual vari-
ables?
•We can obtain an online subgradient of the dual
function
•Compute dual variables by minimizing the dual
function using subgradient descent

Our Algorithm: Dual Subgradient
Descent Algorithm

Input: Initial dual solution µ0, total number of
time periods T , initial resources B0 = Tρ, weight
vector w ∈ Rm

++, and step-size η.
for t = 0, . . . , T − 1 do
Receive (ft, bt) ∼ P .
Make the primal decision and update the
remaining resources:

x̃t = arg maxx∈X{ft(x)− µ>t btx} ,

xt =
{
x̃t if btx̃t ≤ Bt

0 otherwise ,

at = arg maxa≤ρ{r(a) + µ>t a}

Bt+1 = Bt − btxt.
Obtain a stochastic subgradient of dual
problem:

gt = −btx̃t + at .

Update the dual variable by weighted,
projected subgradient descent:

µt+1 = arg min
µ∈Rm

+
〈gt, µ〉 + 1

2η
‖µ− µt‖2

w .

end

Theoretical Results (Informally)

• Let P be unknown i.i.d. distribution of requests
• Suppose that resources B are proportional to
number of time periods T
•The regret of online dual gradient descent satisfies
Regret(ALG) = sup

P
EP [OFFLINE−ALG] ≤ O(T 1/2),

where
• ALG = reward with regularizer collected by the proposed
online algorithm
• OFFLINE = maximal reward with regularizer from the
offline problem

Numerical Experiments

•Problem setting: A publisher has agreed to
deliver ad slots (the requests) to different
advertisers (the resources) to maximize the
cumulative click-through rates (the reward) of the
assignment.
•Regularized Online Problem: The goal is to
design an online allocation algorithm that
maximizes the total expected click-through rate
with a max-min fairness regularizer on resource
consumption:

max
x:xt∈X

T∑
t=1

q>t xt + λ min
j=1,...,m

 T∑
t=1

(xt)j/ρj


s.t.

T∑
t=1

xt ≤ Tρ ,

where λ is the weight of the regularizer.

Regret versus horizon T with different regularization levels λ.

Reward
T∑
t=1

qtxt versus max-min fairness min
j

 T∑
t=1

(xt)j/Tρj

.

Fairness can be significantly improved with a small
amount of click-through rate reduction!


