Regularized Online Allocation Problems: Fairness and Beyond

Abstract

Problem setting: requests repeatedly arrive over
time and, for each request, a decision maker needs to
take an action that generates a reward and consumes
TesOUrces.

Our contribution: we introduce the reqularized
online allocation problem, a variant of online allo-
cation problem that includes a non-linear regularizer
acting on the total resource consumption

Our Goal: The objective is to simultaneously max-
imize total rewards and the value of the regularizer
subject to the resource constraints.

Problem Formulation

e Finite horizon with 7" time periods

® Resources 7 = 1...m with capacities p;1’

e Online Process: At a specific time period ¢:

e A request arrives with revenue function f;, and
consumption matrix by

e Choose action x; from action space X

» Generates a revenue fi(xy)

e Consumes resources by

e Challenge: Information about the future
requests is not known in advance

e Offline problem:

rrEX 1

(O) : max Z filxy) +Tr (7{; bta:'t)

T
S.t. tha:t <Tp,
t=1

where r is a concave regularizer on the
consumption.

e Regularizer: While maximizing the total
revenue, we also would like to impose certain
properties of the allocation, such as fairness among
advertisers, load balancing for machine scheduling,
ete.

Santiago Balseiro '*  Haihao Lu 3

!Columbia University

Examples of the Regularizer r

e Max-min fairness on the consumption:
r(s) = Amin;(s;/p;)

» Max-min fairness on the reward (Santa
Claus Fairness): we can introducing auxiliary
budget constraint on the reward and use the above
fairness on the consumption

e Load balancing on the consumption:
r(s) = —Amin;(s;/p;)

e Penalty when under-delivering:
r(s) = —A>>;cjmax(s; — t;,0)

e Penalty when consumption is above a certain
level: r(s) = =AY, cjmax(t; — s;,0)

Lagrangian Duality to the Rescue

Introducing Lagrange multipliers 1 > 0 for resource
constraints %ZL bix; = a < p where a is an auxil-
iary variable (target consumption), we obtain the dual

problem:
D(p)
T T
= Imnax Z ft(xt) + 71" T(CL) + ,MT T'a — Z btflft
TEX,a<p i—1 t=1

T
=3 (ma(f(w0) = 1Thewr} ) + Tmax{r(a) + 7o)

Challenge # 1: How do we make decisions and
update the target consumption?

o If “optimal” dual variables y* are known, we can
take actions to maximize the dual-variable adjusted
reward and update the target consumption:

Ly = arghax {ft(m) - (M*)Tbtﬂf}
rTEX;
a; = argmax{r(a) + (1) "a}

a<p

o ...but we DO NOT know p* in advance

Challenge #2: How do we compute good dual vari-
ables?

e We can obtain an online subgradient of the dual
function

e Compute dual variables by minimizing the dual
function using subgradient descent
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Our Algorithm: Dual Subgradient
Descent Algorithm

Input: Initial dual solution p, total number of
time periods 1T', initial resources By = I'p, weight
vector w € R, | and step-size 7.
fort=0,...,7 —1do

Receive (f;, by) ~ P.

Make the primal decision and update the
remalining resources:

Ty = arg maxXzex{ fi(z) — u) bix} |

= jjt if btﬁlN?t § Bt
"7 1 0 otherwise

a; = arg max<,{r(a)+ u, a}

Bii1 = By — by
Obtain a stochastic subgradient of dual

problem:
gr = —by + ay .

Update the dual variable by weighted,
projected subgradient descent:

) < > ]- “ ‘|2
= arg min + — || — .
lli7+‘1 §§ [LEEEQZ? £7t7 ll' 2277 lll lld: w

end

Theoretical Results (Informally)

e Let P be unknown i.i.d. distribution of requests

e Suppose that resources B are proportional to
number of time periods T

e The regret of online dual gradient descent satisfies

Regret(ALG) = sup Ep[OFFLINE—ALG] < O(T"?),
P

where

e ALG = reward with regularizer collected by the proposed
online algorithm

e OFFLINE = maximal reward with regularizer from the
offline problem

Numerical Experiments

e Problem setting: A publisher has agreed to
deliver ad slots (the requests) to different
advertisers (the resources) to maximize the
cumulative click-through rates (the reward) of the
assignment.

e Regularized Online Problem: The goal is to
design an online allocation algorithm that
maximizes the total expected click-through rate
with a max-min fairness regularizer on resource

consumption:
T . T
max ; G T+ min ;(%)j/ Pj
T
S.t. Z XL S T,U ,

t=1
where A is the weight of the regularizer.
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Fairness can be significantly improved with a small
amount of click-through rate reduction!



