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Problem

We consider the general nonconvex optimization problem

min f(x
x€R4 ( )7
where the nonconvex function f has the following two forms:

e Finite-sum form:
1 n
f(x) =~ > fi(x).
i=1
(n data samples, f; is the nonconvex loss on data /)

e Online form:
f(x) = E¢n[F(x, Q)]
(data is drawn from an unknown distribution D)
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Related Work

There exist many methods for solving this optimization problem with
both forms, such as Gradient Descent (GD), Stochastic GD (SGD), and
many variance-reduced methods (e.g., SVRG, SVRG+, L-SVRG, SAGA,
SCSG, SNVRG, SARAH, SPIDER, SpiderBoost and SSRGD).

However, these methods either do not achieve the optimal results or are
complicated in algorithmic structure and/or convergence analysis.
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both forms, such as Gradient Descent (GD), Stochastic GD (SGD), and
many variance-reduced methods (e.g., SVRG, SVRG+, L-SVRG, SAGA,
SCSG, SNVRG, SARAH, SPIDER, SpiderBoost and SSRGD).

However, these methods either do not achieve the optimal results or are
complicated in algorithmic structure and/or convergence analysis.

In this work, we provide a simple PAGE algorithm for achieving optimal
results with simple convergence analysis, and provide tight lower bounds
for validating the optimality.

Zhize Li (KAUST) PAGE ICML 2021 5/16



Our PAGE Algorithm
Algorithm 1 ProbAbilistic Gradient Estimator (PAGE)

Input: initial x°, stepsize 1, minibatch b, b, probability {p;}
1. g0 = %Zie/ Vf,-(xo) // | denotes random minibatch samples with |/| = b
2: fort—0,1,2 . do

3 Xt = xt gt
i gttl EZie/ Vii(x"1) with prob. p;

| gt + ﬁ Ziel'(vﬁ'(XH_l) - vﬁ(Xt)) with prob. 1— JoJt
5. end for

Output: X7 chosen uniformly from {x"}.ci7

e PAGE uses minibatch SGD update with probability p;, and reuses the
previous gradient gt with a small adjustment (lower computational cost
if b’ < b) with probability 1 — p;.
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Convergence Results (finite-sum)

Average L-smooth: E;[||Vfi(x) — VA(y)|]?] < L?||x — y|?

Theorem 1 (Optimal result of PAGE in finite-sum case)

Suppose f is average L-smooth, choosing appropriate parameters, the
number of stochastic gradient computations of PAGE for finding an

e-approximate solution E[||Vf(X7)||]] < € is #grad = O(n + \/;L)
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Proof Sketch of Theorem 1

Lemma 1 (one iteration). Suppose f is L-smooth and x**! := x* —ngt.
Then for any g' € RY and n > 0, we have
1 L

Ui Ui
A1) < £ = ZIVAIP = (5 = 5 ) I =+ 5l = VAP (1)
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Proof Sketch of Theorem 1

Lemma 1 (one iteration). Suppose f is L-smooth and x**! := x* —ngt.
Then for any gt € R? and 1 > 0, we have

U 1 L U
F(XH) < F(x) = ZIVA) 2 = (50— 5 ) I = X2+ Zlig = VAP (1)

2n 2
Lemma 2 (variance). Under average L-smoothness assumption, the
gradient estimator gt*! of PAGE (Line 4 of Algorithm 1) satisfies

1-— Pt)l-2

Elllg™* = VAP < 1= p)llg" = V)| + ( o IX T =X ()
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Proof Sketch of Theorem 1

Lemma 1 (one iteration). Suppose f is L-smooth and x**! := x* —ngt.
Then for any gt € R? and 1 > 0, we have
t+1 ty 1 12 i_é t+1  oty2 . Myt t\]12
A1) < £ = ZIVAIP = (5 = 5 ) I =+ 5l = VAP (1)
Lemma 2 (variance). Under average L-smoothness assumption, the
gradient estimator gt*! of PAGE (Line 4 of Algorithm 1) satisfies
. 2
E[lg™ — VA7) < (1- pollg’ - VeGP + L2
Adding (1) with 2% x (2) and letting & := f(x*) — f* + 1L|lg" — VF(x")|7%,
we have E[®.,;] <E o, — 2|VF(x")[?]. Summing up from t =0to T —1,
we get E[®7] < E[®o] — £ 35 E[|VF(x)]J].

I = X% (2)
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Proof Sketch of Theorem 1

Lemma 1 (one iteration). Suppose f is L-smooth and x1 := xt —ngt.
Then for any gt € R? and 1 > 0, we have
t+1 ty 1 12 i_é t+1  oty2 . Myt t\]12
A1) < £ = ZIVAIP = (5 = 5 ) I =+ 5l = VAP (1)
Lemma 2 (variance). Under average L-smoothness assumption, the
gradient estimator gt*! of PAGE (Line 4 of Algorithm 1) satisfies
. 2
E[lg™ — VA7) < (1- pollg’ - VeGP + L2
Adding (1) with 2% x (2) and letting & := f(x*) — f* + 1L|lg" — VF(x")|7%,
we have E[®.,] <E [o, — 2||VF(x")|?]. Summing up from t =0to T —1,
we get E[®7] < E[dg] — 25 E[| V(x|
Then according to the random output X7 of PAGE, we have

2¢ 2¢ nlL
B[IVAE)P < 220 =2 T=20 grad= bt T(ob+ (1 p)8) = O(n + v ).
nT €2n €2

I = X% (2)
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Convergence Result and Lower Bound (finite-sum)

Average L-smooth: E;[||Vfi(x) — VA(y)|I?] < L?||x — y|?
Theorem 1 (Optimal result of PAGE in finite-sum case)

Suppose f is average L-smooth, choosing appropriate parameters, the
number of stochastic gradient computations of PAGE for finding an

e-approximate solution E[||Vf(X7)||] < € is #grad = O(n + ‘/jL)

Theorem 2 (Lower bound)

There exists a function f satisfying average L-smoothness such that any
linear-span first-order algorithm needs €2(n + ‘/jL) stochastic gradient

computations for finding an e-approximate solution.
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Convergence Result and Lower Bound (online)
Average L-smooth: E;[||Vfi(x) — VA(y)||?] < L?||x — y|?
Bounded variance: E;[||Vfi(x) — VF(x)|]?] < o2

Theorem 3 (Optimal result of PAGE in online case)

Suppose f is average L-smooth and has bounded variance of stochastic
gradient, choosing appropriate parameters, the number of stochastic
gradient computations of PAGE for finding an e-approximate solution is

#grad = O(b + @) where b = min{n, 26%2}
Theorem 4 (Lower bound)

There exists a function f satisfying average L-smoothness and bounded
variance of stochastic gradient such that any linear-span first-order
algorithm needs Q(b + @) where b = min{n, Z—;} stochastic gradient
computations for finding an e-approximate solution.
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Better Convergence under PL Condition

PL condition: 3u > 0, such that [|[VF(x)|> > 2u(f(x) — f*)

If f satisfies PL condition, PAGE will lead to faster linear convergence
rates O(log 1) instead of sublinear rates O(%).
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Better Convergence under PL Condition

PL condition: 3u > 0, such that [|[VF(x)|> > 2u(f(x) — f*)

If f satisfies PL condition, PAGE will lead to faster linear convergence
rates O(log 1) instead of sublinear rates O(%).

Theorem 5 (Switch to linear convergence under PL condition)

Under PL condition, PAGE with the same parameter setting can switch
to the faster linear convergence results, i.e.,

e Finite-sum case: O(n + %) — O((n+ %) log %)
e Online case: O(b+ ¥8t) —s O((b + %) log ), b=min{n, %2 .
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Experiments

Recall the update step of PAGE:

t-|-1 ng

i1 ) 3 2ie VE(xET) with prob. p;
gt + e (VAT — VA(x')  with prob. 1 — p,

PAGE is easy to implement via a small adjustment to vanilla SGD (i.e.,
p =1 in PAGE), and enjoys a lower computational cost if b’ < b.

g

In theory, PAGE can be better than SGD by a factor of 6% or % where €
is the target error E[|VF(%7)||] < e.
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Experiments

Recall the update step of PAGE:
t-|-1 ng
=3 e VE(xT) with prob. p;
g+ ﬁ ZI.EI,(Vf,-(X”l) — Vfi(x)) with prob. 1 — p;
PAGE is easy to implement via a small adjustment to vanilla SGD (i.e.,
p =1 in PAGE), and enjoys a lower computational cost if b’ < b.

t+1
g

In theory, PAGE can be better than SGD by a factor of 6% or % where €
is the target error E[|VF(%7)||] < e.

In experiments, we compare our PAGE with SGD by running standard
LeNet, VGG, ResNet models on MNIST and CIFAR-10 datasets.
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Experiments (MNIST)

LeNet vs ResNet18 LeNet vs ResNet18
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Figure 1: PAGE vs. SGD with LeNet and ResNet18 on MNIST dataset

e PAGE converges faster in training and also gets higher test accuracy.
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Experiments (CIFAR-10)
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Figure 2: PAGE vs. SGD with VGG16 and ResNet18 on CIFAR-10 dataset

e Similarly, PAGE converges faster in training and gets higher test
accuracy on CIFAR-10 dataset.
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Conclusion

e Propose a simple probabilistic gradient estimator called PAGE

e PAGE achieves optimal convergence rates for both nonconvex
finite-sum and online problems

e Provide simple and clean convergence analysis, and tight lower bounds
for validating the optimality

e PAGE can switch to a faster linear convergence under PL condition

e PAGE is easy to implement, converges faster in training and also
achieves higher test accuracy than SGD
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Thanks!

Zhize Li
https://zhizeli.github.io
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