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Problem

We consider the general nonconvex optimization problem

min
x∈Rd

f (x),

where the nonconvex function f has the following two forms:

• Finite-sum form:

f (x) :=
1

n

n∑
i=1

fi(x).

(n data samples, fi is the nonconvex loss on data i)

• Online form:
f (x) := Eζ∼D[F (x , ζ)].

(data is drawn from an unknown distribution D)
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Related Work

There exist many methods for solving this optimization problem with
both forms, such as Gradient Descent (GD), Stochastic GD (SGD), and
many variance-reduced methods (e.g., SVRG, SVRG+, L-SVRG, SAGA,
SCSG, SNVRG, SARAH, SPIDER, SpiderBoost and SSRGD).

However, these methods either do not achieve the optimal results or are
complicated in algorithmic structure and/or convergence analysis.

In this work, we provide a simple PAGE algorithm for achieving optimal
results with simple convergence analysis, and provide tight lower bounds
for validating the optimality.
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Our PAGE Algorithm
Algorithm 1 ProbAbilistic Gradient Estimator (PAGE)

Input: initial x0, stepsize η, minibatch b, b′, probability {pt}
1: g 0 = 1

b

∑
i∈I ∇fi(x0) // I denotes random minibatch samples with |I | = b

2: for t = 0, 1, 2, . . . do
3: x t+1 = x t − ηg t

4: g t+1 =

{
1
b
∑

i∈I ∇fi(x t+1) with prob. pt

g t + 1
b′

∑
i∈I ′(∇fi(x t+1)−∇fi(x t)) with prob. 1− pt

5: end for
Output: x̂T chosen uniformly from {x t}t∈[T ]

• PAGE uses minibatch SGD update with probability pt , and reuses the
previous gradient g t with a small adjustment (lower computational cost
if b′ � b) with probability 1− pt .
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Convergence Results (finite-sum)

Average L-smooth: Ei [‖∇fi(x)−∇fi(y)‖2] ≤ L2‖x − y‖2

Theorem 1 (Optimal result of PAGE in finite-sum case)
Suppose f is average L-smooth, choosing appropriate parameters, the
number of stochastic gradient computations of PAGE for finding an

ε-approximate solution E[‖∇f (x̂T )‖] ≤ ε is #grad = O(n +
√

nL
ε2 ).
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Proof Sketch of Theorem 1
Lemma 1 (one iteration). Suppose f is L-smooth and x t+1 := x t − ηg t .
Then for any g t ∈ Rd and η > 0, we have

f (x t+1) ≤ f (x t)− η

2
‖∇f (x t)‖2 −

( 1

2η
− L

2

)
‖x t+1 − x t‖2 +

η

2
‖g t −∇f (x t)‖2. (1)

Lemma 2 (variance). Under average L-smoothness assumption, the
gradient estimator g t+1 of PAGE (Line 4 of Algorithm 1) satisfies

E
[
‖g t+1 −∇f (x t+1)‖2

]
≤ (1− pt)‖g t −∇f (x t)‖2 +

(1− pt)L
2

b′
‖x t+1 − x t‖2. (2)

Adding (1) with η
2p × (2) and letting Φt := f (x t)− f ∗ + η

2p
‖g t −∇f (x t)‖2,

we have E [Φt+1] ≤ E
[
Φt − η

2
‖∇f (x t)‖2

]
. Summing up from t = 0 to T − 1,

we get E[ΦT ] ≤ E[Φ0]− η
2

∑T−1
t=0 E[‖∇f (x t)‖2].

Then according to the random output x̂T of PAGE, we have

E[‖∇f (x̂T )‖2] ≤ 2Φ0

ηT
= ε2, T =

2Φ0

ε2η
, #grad = b + T (pb + (1− p)b′) = O

(
n +

√
nL
ε2

)
.
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Convergence Result and Lower Bound (finite-sum)

Average L-smooth: Ei [‖∇fi(x)−∇fi(y)‖2] ≤ L2‖x − y‖2

Theorem 1 (Optimal result of PAGE in finite-sum case)
Suppose f is average L-smooth, choosing appropriate parameters, the
number of stochastic gradient computations of PAGE for finding an

ε-approximate solution E[‖∇f (x̂T )‖] ≤ ε is #grad = O(n +
√

nL
ε2 ).

Theorem 2 (Lower bound)
There exists a function f satisfying average L-smoothness such that any

linear-span first-order algorithm needs Ω(n +
√

nL
ε2 ) stochastic gradient

computations for finding an ε-approximate solution.
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Convergence Result and Lower Bound (online)
Average L-smooth: Ei [‖∇fi(x)−∇fi(y)‖2] ≤ L2‖x − y‖2

Bounded variance: Ei [‖∇fi(x)−∇f (x)‖2] ≤ σ2

Theorem 3 (Optimal result of PAGE in online case)
Suppose f is average L-smooth and has bounded variance of stochastic
gradient, choosing appropriate parameters, the number of stochastic
gradient computations of PAGE for finding an ε-approximate solution is

#grad = O(b +
√
bL
ε2 ), where b = min{n, 2σ2

ε2 }.

Theorem 4 (Lower bound)
There exists a function f satisfying average L-smoothness and bounded
variance of stochastic gradient such that any linear-span first-order

algorithm needs Ω(b +
√
bL
ε2 ), where b = min{n, σ2

ε2 }, stochastic gradient
computations for finding an ε-approximate solution.
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Better Convergence under PL Condition

PL condition: ∃µ > 0, such that ‖∇f (x)‖2 ≥ 2µ(f (x)− f ∗)

If f satisfies PL condition, PAGE will lead to faster linear convergence
rates O(log 1

ε ) instead of sublinear rates O( 1
ε2 ).

Theorem 5 (Switch to linear convergence under PL condition)
Under PL condition, PAGE with the same parameter setting can switch
to the faster linear convergence results, i.e.,

• Finite-sum case: O(n +
√
nL
ε2 ) −→ O

(
(n +

√
nL
µ

) log 1
ε

)
• Online case: O(b +

√
bL
ε2 ) −→ O

(
(b +

√
bL
µ

) log 1
ε

)
, b = min{n, 2σ2

µε }.
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Experiments

Recall the update step of PAGE:
x t+1 = x t − ηg t

g t+1 =

{
1
b
∑

i∈I ∇fi(x t+1) with prob. pt

g t + 1
b′

∑
i∈I ′(∇fi(x t+1)−∇fi(x t)) with prob. 1− pt

PAGE is easy to implement via a small adjustment to vanilla SGD (i.e.,
p = 1 in PAGE), and enjoys a lower computational cost if b′ < b.

In theory, PAGE can be better than SGD by a factor of 1
ε2 or σ

ε , where ε
is the target error E[‖∇f (x̂T )‖] ≤ ε.

In experiments, we compare our PAGE with SGD by running standard
LeNet, VGG, ResNet models on MNIST and CIFAR-10 datasets.
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Experiments (MNIST)
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(1a) Training loss
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Figure 1: PAGE vs. SGD with LeNet and ResNet18 on MNIST dataset

• PAGE converges faster in training and also gets higher test accuracy.
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Experiments (CIFAR-10)
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Figure 2: PAGE vs. SGD with VGG16 and ResNet18 on CIFAR-10 dataset

• Similarly, PAGE converges faster in training and gets higher test
accuracy on CIFAR-10 dataset.
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Conclusion

• Propose a simple probabilistic gradient estimator called PAGE

• PAGE achieves optimal convergence rates for both nonconvex
finite-sum and online problems

• Provide simple and clean convergence analysis, and tight lower bounds
for validating the optimality

• PAGE can switch to a faster linear convergence under PL condition

• PAGE is easy to implement, converges faster in training and also
achieves higher test accuracy than SGD
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Thanks!

Zhize Li
https://zhizeli.github.io
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