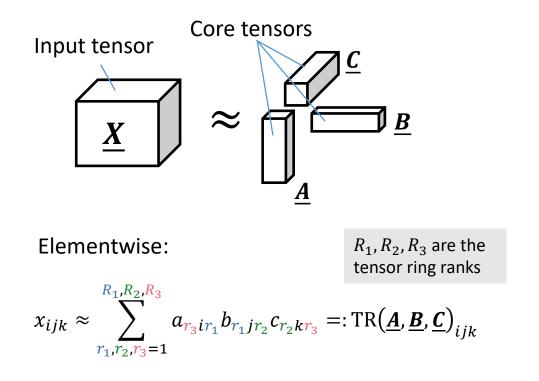
A Sampling-Based Method for Tensor Ring Decomposition

Osman Asif Malik Stephen Becker

Department of Applied Mathematics University of Colorado Boulder

Tensor ring decomposition via sampling



Can formulate the fitting problem as an optimization problem:

$$\underset{\underline{A},\underline{B},\underline{C}}{\operatorname{argmin}} \|\operatorname{TR}(\underline{A},\underline{B},\underline{C}) - \underline{X}\|_{\mathrm{F}}$$

Standard approach is to fit using alternating least squares (ALS):

Algorithm: Tensor Ring ALS [Zhao et al. '16] Randomly initialize cores $\underline{A}, \underline{B}, \underline{C}$ for i = 1:max_iter $\begin{array}{l} \underline{A} = \underset{\underline{A'}}{\operatorname{argmin}} \| \operatorname{TR}(\underline{A'}, \underline{B}, \underline{C}) - \underline{X} \|_{F} \\ \underline{B} = \underset{\underline{B'}}{\operatorname{argmin}} \| \operatorname{TR}(\underline{A}, \underline{B'}, \underline{C}) - \underline{X} \|_{F} \\ \underline{C} = \underset{\underline{C'}}{\operatorname{argmin}} \| \operatorname{TR}(\underline{A}, \underline{B}, \underline{C'}) - \underline{X} \|_{F} \\ \operatorname{Check convergence criteria} \\ end \end{array}$

Least squares problems are sampled efficiently

Consider a subproblem:

$$\underline{A} = \underset{\underline{A}'}{\operatorname{argmin}} \left\| \operatorname{TR}(\underline{A}', \underline{B}, \underline{C}) - \underline{X} \right\|_{\mathrm{F}}$$

This can be reshaped into a matrix linear least squares problem of the form

$$A^* \coloneqq \underset{A}{\operatorname{argmin}} \|GA - X\|_F$$

where

- *G* comes from merging and reshaping <u>*B*</u>, <u>*C*</u>
- A is a reshaped version of \underline{A}'
- X comes from reshaping \underline{X}

For *N*-way $I \times \cdots \times I$ input tensor <u>*X*</u>:

- forming G costs $NI^{N-1}R^3$
- solving least squares problem costs $I^N R^2$

R is the target rank, assumed to be the same for all dimensions

Can reduce these costs via sampling:

$$\tilde{A} \coloneqq \underset{A}{\operatorname{argmin}} \|SGA - SX\|_F$$

$$\begin{array}{c} \hline \\ \hline \\ G \end{array} \longrightarrow \begin{array}{c} \hline \\ SG \end{array}$$

When J rows are sampled:

- forming SG costs JN^2R^3
- solving least squares problem costs JNIR²

Key challenge: Computing distribution of *S* efficiently given structure of *G*

Theorem [M., Becker '21]

Can construct sampling distribution in IR^4 time such that the solution \tilde{A} satisfies

 $\left\| G \tilde{A} - X \right\|_F \le (1 + \varepsilon) \| G A^* - X \|_F$

with probability at least $1 - \delta$ provided at least $J > 4R^{2N}/(\epsilon\delta)$ rows are sampled*.

* Simplified bound assumes $arepsilon\delta$ is sufficiently small.

Results in algorithm with complexity *sublinear* in number of entries in input tensor

Osman Asif Malik (osman.malik@colorado.edu)

A Sampling-Based Method for Tensor Ring Decomposition

Experiments

Decomposition

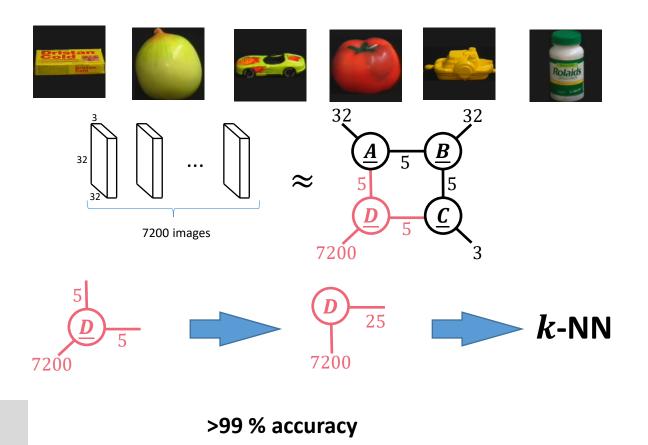
Datasets:

Dataset	Size	Type
Pavia Uni.	$610 \times 340 \times 103$	Hyperspectral
DC Mall	$1280\times 307\times 191$	Hyperspectral
Park Bench	$1080\times1920\times364$	Video
Tabby Cat	$720\times1280\times286$	Video
Red Truck	$128 \times 128 \times 3 \times 72$	Images

- Substantial speedup over standard algorithm
- Only minor loss in accuracy

Feature extraction

COIL-100 dataset [Nene et al. '96]:



Thank you for your attention!

Osman Asif Malik (osman.malik@colorado.edu)

A Sampling-Based Method for Tensor Ring Decomposition