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DouDizhu: A Popular and Challenging Chinese Poker

*  Popularity: There are more than 800 million registered users and 40 million daily active
players on the Tencent mobile platform for DouDizhu.

*  Both Competition and Collaboration: Two Peasants fight against Landlord.
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* Large State Space: There are up to 1 information sets with very large sizes.

* Large Action Space: There are 27, 472 possible actions due to combinations of cards.
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Challenge: Large and Variable Action Space

Action Type \ Number of Actions

Solo 15 391 Legal Combinations
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Total | 27,472

e Difficulty: Previous work shows that DQN and A3C can only be sightly better than random
policies [1][2] in DouDizhu.

*  Existing Efforts: CQN [1] uses decomposition but it can not beat simple rules; DeltaDou [3]

abstracts the action space with heuristics but it is too slow (two months training).

[1] You, Yang, et al. "Combinational Q-Learning for Dou Di Zhu." arXiv preprint arXiv:1901.08925 (2019).
[2] Zha, Daochen, et al. "RLCard: A Platform for Reinforcement Learning in Card Games." 1JCAI. 2020.

[3] Jiang, Qiqi, et al. "DeltaDou: Expert-level Doudizhu Al through Self-play." IJCAI. 2019
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Monte-Carlo (MC) Methods

 Tooptimize a policy i, every-visit MC [1] can be used to estimate Q-table Q(s, a) by iteratively

executing the following procedure:
1. Generate an episode using .

2. For each s, a appeared in the episode, calculate and update Q(s, a) with the

return averaged over all the samples concerning s, a.

3. For each s in the episode, 1i(s) < arg maxa Q(s, a).

[1] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.
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Deep Monte-Carlo (DMC)

*  We enhance traditional Monte-Carlo methods with deep neural networks, action encoding,

and parallel actors.
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[1] You, Yang, et al. "Combinational Q-Learning for Dou Di Zhu." arXiv preprint arXiv:1901.08925 (2019).

[2] Zha, Daochen, et al. "RLCard: A Platform for Reinforcement Learning in Card Games." IJCAI. 2020.
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DouZero Outperforms the Existing Als

* Given an algorithm A and an opponent B, we use two metrics to compare the performance of

A and B:

1. WP (Winning Percentage): The number of the game won by A divided by the total

number of games.

2. ADP (Average Difference in Points): The average difference of points scored per

game between A and B. The base point is 1. Each bomb will double the score.

Rank B| DouZero DeltaDou SL RHCP-v2 RHCP RLCard CQN Random
A WP ADP | WP ADP | WP ADP | WP ADP | WP ADP | WP ADP | WP ADP | WP ADP
1 ||DouZero - - 10.586 0.258 |0.659 0.700 [0.757 1.662 [0.764 1.671 |0.889 2.288 0.810 1.685 |0.989 3.036
2 ||DeltaDou [0.414 -0.258| - - 10.617 0.653 [0.745 1.500 [0.747 1.514 (0.876 2.459 |0.784 1.534 |0.992 3.099
3 ||SL 0.341 -0.700|0.396 -0.653| - - 10.611 0.853 [0.632 0.886 [0.813 1.821 (0.694 1.037 |0.976 2.721
4 ||RHCP-v2 |0.243 -1.662(0.257 -1.500{0.389 -0.853| - - 10.515 0.052 |0.692 1.121 [0.621 0.714 [0.967 2.631
5 ||RHCP 0.236 -1.671|0.253 -1.514|0.369 -0.886[0.485 -0.052| - - 10.682 1.259 |0.603 0.248 |0.941 2.720
6 ||RLCard 0.111 -2.288|0.124 -2.459|0.187 -1.821{0.309 -1.121]0.318 -1.259| - - 10.522 0.168 |0.943 2.471
7 ||CQN 0.190 -1.685(0.216 -1.534|0.306 -1.037(0.379 -0.714{0.397 -0.2480.478 -0.168| - - 10.889 1.912

8 ||Random 0.011 -3.036|0.008 -3.099|0.024 -2.721{0.033 -2.631[0.059 -2.720(0.057 -2.471|0.111 -1.912| - -
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DouZero Outperforms the Existing Als

* DouZero ranked the first in the Botzone leaderboard among 344 Al agents.
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Open-Source Projects and Demo

* Given the simplicity of the our method, we believe there are lots of future opportunities.
*  We have open-sourced our code to facilitate future research.

*  We have developed an online demo to play against the Al.
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Takeaways

*  Simple Monte-Carlo (MC) methods can be made to deliver strong performance in a hard domain,

enhanced with neural networks and action encoding.
* Areasonable experimental pipeline for DouDizhu domain with only days of training on 4 GPUs.
* Open-Sourced everything (environment, code, pre-trained model, GUI demo).

*  We hope our efforts can motivate future research of RL.

Online Demo: https://douzero.org/

Paper: https://arxiv.orqg/abs/2106.06135

Code: https://qgithub.com/kwai/DouZero

RLCard (integrated DouZero): https://rlcard.org/
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