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INTRODUCTION



Problem Description
We consider the following finite-sum minimization:

min
w∈Rd

{
F(w) := 1

n

n∑
i=1

f(w; i)
}
, (1)

where f(·; i) : Rd → R is a given smooth and possibly nonconvex function
for i ∈ [n] := {1, . . . ,n}.

Figure: Neural network.1

1Image source: https://www.ibm.com/
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Regular (Standard) Scheme vs. Shuffling Scheme

1. Regular (Standard) Scheme
▶ Uniformly at random: at each iteration of epoch t, sample an index

i uniformly at random from [n] := {1, . . . ,n}.

1 2 3 ... n − 1 n
1 epoch = n gradient evaluations

2. Shuffling Scheme
▶ Incremental Gradient: for all epoch t, use a fixed permutation

π(t) := {1, . . . ,n}.
▶ Shuffle Once: at the first epoch t = 1, random shuffle a

permutation π(t) from [n] := {1, . . . ,n} and use it for all epochs.
▶ Random Reshuffling: at epoch t, random shuffle a permutation π(t)

from [n] := {1, . . . ,n}.
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ALGORITHMS



Shuffling Momentum Gradient - SMG

Algorithm 1 Shuffling Momentum Gradient (SMG)

1: Initialization: Choose w̃0 ∈ Rd and set m̃0 := 0.
2: for t := 1, 2, · · · ,T do
3: Set w(t)

0 := w̃t−1; m(t)
0 := m̃t−1; and v(t)0 := 0;

4: Generate a deterministic or random permutation π(t) of [n];
5: for i := 0, · · · ,n − 1 do
6: Query g(t)i := ∇f(w(t)

i ;π(t)(i + 1));
7: Choose η

(t)
i := ηt

n and update
m(t)

i+1 := βm(t)
0 + (1− β)g(t)i New update

v(t)i+1 := v(t)i + 1
n g(t)i

w(t)
i+1 := w(t)

i − η
(t)
i m(t)

i+1;
8: end for
9: Set w̃t := w(t)

n and m̃t := v(t)n ;
10: end for
11: Output: Choose ŵT ∈ {w̃0, · · · , w̃T−1} at random with probability

P[ŵT = w̃t−1] =
ηt∑T

t=1 ηt
.
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Assumptions

Assumption 1
Problem (1) satisfies:
(a) (Boundedness) F∗ := inf

w∈Rd
F(w) > −∞.

(b) (L-smoothness) f(·; i) is L-smooth for all i ∈ [n], i.e., there exists a
constant L > 0 such that for all w,w′ ∈ dom (F):

∥∇f(w; i)−∇f(w′; i)∥ ≤ L∥w − w′∥. (2)

(c) (Generalized bounded variance) There exist two finite constants
Θ, σ ≥ 0 such that for any w ∈ dom (F):

1

n

n∑
i=1

∥∇f(w; i)−∇F(w)∥2 ≤ Θ∥∇F(w)∥2 + σ2. (3)
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Non-convex results

Theorem 1
Suppose that Assumption 1 holds for (1). Let {w(t)

i }T
t=1 be generated by

Algorithm 1 with a fixed momentum weight 0 ≤ β < 1 and an epoch
learning rate η

(t)
i := ηt

n for every t ≥ 1. Assume that η0 = η1, ηt ≥ ηt+1,
and 0 < ηt ≤ 1

L
√

K for t ≥ 1, where K := max
{

5
2 ,

9(5−3β)(Θ+1)
1−β

}
. Then

E
[
∥∇F(ŵT)∥2

]
≤ 4[F(w̃0)− F∗]

(1− β)
∑T

t=1 ηt
+

9σ2L2(5− 3β)

(1− β)

(∑T
t=1 η

3
t−1∑T

t=1 ηt

)
.

This result is flexible enough to cover multiple different learning rates.
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Corollary

Corollary (Constant learning rate)
Let us fix the number of epochs T ≥ 1, and choose a constant learning
rate ηt :=

γ
T1/3 for some γ > 0 such that γ

T1/3 ≤ 1
L
√

K for t ≥ 1 in
Algorithm 1. Then, under the conditions of Theorem 1:

E
[
∥∇F(ŵT)∥2

]
≤ 1

T2/3

(
4[F(w̃0)− F∗]

(1− β)γ
+

9σ2(5− 3β)L2γ2

(1− β)

)
.

With a constant LR, the convergence rate of SMG is exactly expressed as

O
(
[F(w̃0)− F∗] + σ2

T2/3

)
,

which matches the best known rate in the literature in term of T for
general shuffling-type strategies [Nguyen et al., 2020].
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Other learning rate schemes
▶ Diminishing learning rate [Nguyen et al., 2020]:

ηt :=
γ

(t + λ)α
where α, γ > 0, and λ ≥ 0.

Choosing α = 1/3, the convergence rate of SMG is
O(T−2/3 log(T)) in epoch.

▶ Exponential learning rate [Li et al., 2020]:

ηt :=
γαt

T1/3
, where γ > 0, ρ > 0, and α := ρ1/T ∈ (0, 1).

▶ Cosine learning rate [Loshchilov and Hutter, 2017, Smith, 2017]:

ηt :=
γ

T1/3

(
1 + cos tπ

T

)
, where γ > 0.

The scheduled exponential and cosine learning rates still preserve our
best known convergence rate O(T−2/3).
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Theorem RR

Theorem 2
Suppose that Assumption 1 holds for (1). Let {w(t)

i }T
t=1 be generated by

Algorithm 1 under a randomized reshuffling strategy, a fixed
momentum weight 0 ≤ β < 1, and an epoch learning rate η

(t)
i := ηt

n for
every t ≥ 1. Assume that ηt ≥ ηt+1 and 0 < ηt ≤ 1

L
√

D for t ≥ 1, where
D = max

(
5
3 ,

6(5−3β)(Θ+n)
n(1−β)

)
and η0 = η1. Then

E
[
∥∇F(ŵT)∥2

]
≤ 4 [F(w̃0)− F∗]

(1− β)
∑T

t=1 ηt
+

6σ2(5− 3β)L2

n(1− β)

(∑T
t=1 η

3
t−1∑T

t=1 ηt

)
.

With a randomized reshuffling strategy and constant learning rates, the
convergence rate of SMG is improved to

O
(
[F(w̃0)− F∗] + σ2

n1/3T2/3

)
,

which matches the best known rate in the literature in term of T for
general shuffling-type strategies [Mishchenko et al., 2020].
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Single Shuffling Momentum Gradient

Algorithm 2 Single Shuffling Momentum Gradient

1: Initialization: Choose w̃0 ∈ Rd and set m̃0 := 0;
2: Generate a permutation π of [n];
3: for t := 1, 2, · · · ,T do
4: Set w(t)

0 := w̃t−1 and m(t)
0 := m̃t−1;

5: for i =: 0, · · · ,n − 1 do
6: Query g(t)i := ∇f(w(t)

i ;π(i + 1));
7: Choose η

(t)
i := ηt

n and update{
m(t)

i+1 := βm(t)
i + (1− β)g(t)i

w(t)
i+1 := w(t)

i − η
(t)
i m(t)

i+1;

8: end for
9: Set w̃t := w(t)

n and m̃t := m(t)
n ;

10: end for
11: Output: Choose ŵT ∈ {w̃0, · · · , w̃T−1} at random with probability

P[ŵT = w̃t−1] =
ηt∑T

t=1 ηt
.
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Assumption

Assumption 2 (Bounded gradient)
There exists G > 0 such that ∥∇f(x; i)∥ ≤ G, ∀x ∈ dom (F) and i ∈ [n].

This assumption is slightly stronger than assumption 1(c) (Generalized
bounded variance).
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Theorem

Theorem 3
Let {w(t)

i }T
t=1 be generated by Algorithm 2 with a LR η

(t)
i := ηt

n and
0 < ηt ≤ 1

L for t ≥ 1. Then, under Assumption 1(a)-(b) and Assumption
2, we have

E
[
∥∇F(ŵT)∥2

]
≤ ∆1(∑T

t=1 ηt
)
(1− βn)

+ L2G2

(∑T
t=1 ξ

3
t∑T

t=1 ηt

)
+

4βnG2

1− βn ,

where ξt := max(ηt, ηt−1) for t ≥ 2, ξ1 = η1, and

∆1 := 2[F(w̃0)− F∗] +

(
1

L + η1

)
∥∇F(w̃0)∥2 + 2Lη21G2.

With a constant learning rate, the convergence rate of Algorithm 2 is

O
(

L[F(w̃0)− F∗] + ∥∇F(w̃0)∥2 + G2

T2/3

)
.
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EXPERIMENTS



Experiments - Neural Networks
We compare our SMG with SGD and two other methods: SGD with
Momentum [Polyak, 1964] and Adam [Kingma and Ba, 2014] using the
following architectures:
▶ Fully connected network (LeNet-300-100 [LeCun et al., 1998]) for

the Fashion-MNIST dataset.
▶ Convolutional neural network (LeNet-5 [LeCun et al., 1998]) for the

CIFAR-10 dataset.

Figure: Fashion-MNIST dataset (left) and CIFAR-10 dataset (right).2
2Image source: https://www.tensorflow.org/
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Results - Neural Networks

Figure: The train loss produced by SMG, SGD, SGD-M, and Adam.

Figure: The train loss reported by SMG with different β.
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Experiments - Non-convex Logistic Regression

We consider the following non-convex binary classification problem:

min
w∈Rd

{
F(w) := 1

n

n∑
i=1

[
log(1 + exp(−yix⊤i w)) + λr(w)

]}
,

where {(xi, yi)}n
i=1 : a set of training samples,

r(w) := 1

2

d∑
j=1

w2
j

1 + w2
j
, a nonconvex regularizer,

λ := 0.01, a regularization parameter.

We did the similar experiments on two classification datasets w8a and
ijcnn1 from LIBSVM.
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Results - Non-convex Logistic Regression

Figure: The train loss produced by SMG, SGD, SGD-M, and Adam.

Figure: The train loss produced by SMG under different values of β.
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Our Contributions

(a) We develop SMG, a novel shuffling gradient-based method with
momentum for the finite-sum nonconvex minimization problem.

(b) We establish the convergence of our method and achieve the
state-of-the-art O

(
1/T2/3

)
convergence rate for all the shuffling

strategies. When using a random reshuffling scheme, this rate is
improved by n1/3.

(c) We study and provide theoretical results for different learning rates,
including diminishing, exponential, and cosine scheduled schemes.

(d) We analyze the convergence of a variant with traditional momentum
update and achieve the same O(1/T2/3) epoch-wise rate using
single shuffling strategies.
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Trang H. Tran - htt27@cornell.edu
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