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INTRODUCTION




Problem Description

We consider the following finite-sum minimization:

min {F(w) = ! Zf(w, z)}, (1)

wER?

where f(+; i) : R¢ — R is a given smooth and possibly nonconvex function
forie [n]:={1,...,n}.

Figure: Neural network.’
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Regular (Standard) Scheme vs. Shuffling Scheme

1. Regular (Standard) Scheme

» Uniformly at random: at each iteration of epoch ¢, sample an index
i uniformly at random from [n] := {1,...,n}.

Trang H. Tran, Lam M. Nguyen, Quoc Tran-Dinh SMG: A Shuffling Gradient-Based Method with Momentum



Regular (Standard) Scheme vs. Shuffling Scheme
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1 2 3 ... n—1 n

1 epoch = n gradient evaluations
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Regular (Standard) Scheme vs. Shuffling Scheme

1. Regular (Standard) Scheme

» Uniformly at random: at each iteration of epoch ¢, sample an index
i uniformly at random from [n] := {1,...,n}.

1 2 3 ... n—-1 n
1 epoch = n gradient evaluations

2. Shuffling Scheme
» Incremental Gradient: for all epoch ¢, use a fixed permutation
a®={1,...,n}.
» Shuffle Once: at the first epoch ¢ = 1, random shuffle a
permutation 7 from [n] := {1,...,n} and use it for all epochs.

» Random Reshuffling: at epoch ¢, random shuffle a permutation x®
from [n] :={1,...,n}.
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ALGORITHMS




Shuffling Momentum Gradient - SMG

Algorithm 1 Shuffling Momentum Gradient (SMG)

1: Initialization: Choose W, € R? and set g := 0.
2 for t:=1,2,---, T do
3: Set w(()t) = Wi mét) = my—1; and 'ugt) =0;
Generate a deterministic or random permutation 7(? of [n];
for i:=0,---,n—1do
Query gl = Vf(w; (. (4 1));

Choose n() = 1 and update

(t) (t) ()
g U oy
s T

N 9o

o (t>+ "?3 (1
Wity = W i Mg
8: end for
9: Set w; := w() and my; = v%),
10: end for
11: Qutput: Choose wr € {wp, - ,wr_1} at random with probability
Pliwvr = wpq] = Z£‘1 o
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Assumptions

Problem (1) satisfies:

(a) (Boundedness) F, := inf F(w) > —oo.
weRY

(b) (L-smoothness) f(-;7) is L-smooth for all 7 € [n], i.e., there exists a
constant L > 0 such that for all w, «/ € dom (F):
IV Aw; i) = VAW; )| < Lijw— o/|]. (2)

(¢) (Generalized bounded variance) There exist two finite constants
©,0 > 0 such that for any w € dom (F):

S IV )~ VEw)|? < OVAW) 0% (3)
=il
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Non-convex results

Suppose that Assumption 1 holds for (1). Let {wgt)}g;l be generated by
Algorithm 1 with a fixed momentum weight 0 < 8 < 1 and an epoch

learning rate 77( .= = " for every t > 1. Assume that 1o = 11, 7t > 141,

and 0 < n; < \/—fort>1 where K : —max{g,%)éem}. Then

N 2 4[F(io) — F\] 902L2(5 —3B) Zthl 77?—1
E[|VF(ur)|?] < @55 17 ( = )

This result is flexible enough to cover multiple different learning rates.
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Corollary

Let us fix the number of epochs T'> 1, and choose a constant learning
rate n; := T%g for some v > 0 such that T%§ < ﬁ fort>1in
Algorithm 1. Then, under the conditions of Theorem 1:

e 1 (4[F(io) — F.]  902(5 — 38) %42
BV RenIF) < o (25 + )

With a constant LR, the convergence rate of SMG is exactly expressed as

@ <[F(ﬁ10) I_Qf;*] +02> ’

which matches the best known rate in the literature in term of T for
general shuffling-type strategies [Nguyen et al., 2020].
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Other learning rate schemes

» Diminishing learning rate [Nguyen et al., 2020]:

ng i = ﬁ where o,y > 0, and A > 0.
Choosing o = 1/3, the convergence rate of SMG is
O(T-?/31og(T)) in epoch.
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Other learning rate schemes

» Diminishing learning rate [Nguyen et al., 2020]:

v

m where o,y > O, and \ Z 0.

N =

Choosing o = 1/3, the convergence rate of SMG is
O(T-?/31og(T)) in epoch.

» Exponential learning rate [Li et al., 2020]:

yal

M= s where 7 > 0,p >0, and a:= p"/ T (0,1).

» Cosine learning rate [Loshchilov and Hutter, 2017, Smith, 2017]:

tm
Ny = Tl/3 (1+cos T>’ where v > 0.

The scheduled exponential and cosine learning rates still preserve our
best known convergence rate O(T~2/3).
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Theorem RR

Suppose that Assumption 1 holds for (1). Let {wgt)}le be generated by
Algorithm 1 under a randomized reshuffling strategy, a fixed
momentum weight 0 < 8 < 1, and an epoch learning rate ngt) =2 for
every t > 1. Assume that 7y > nyy1 and 0 < 1y < ﬁ) for t > 1, where

D = max (g, W) and 79 = 71. Then

o e < AF@) — R 60%(5 - 38)1 (X miy
SR e T (z;nt)'

With a randomized reshuffling strategy and constant learning rates, the
convergence rate of SMG is improved to

0 ([F(@%/;ﬁ/]j 02) ’

which matches the best known rate in the literature in term of T for

general shuffling-type strategies [Mishchenko et al., 2020].




Single Shuffling Momentum Gradient

Algorithm 2 Single Shuffling Momentum Gradient

. Initialization: Choose @y € R and set g := 0;
. Generate a permutation 7 of [n];
s fort:=1,2,---, Tdo

1
2
3
4:  Set w(()t) ‘= W1 and m(()t) :
5
6
7

= my—1;
for i=:0,---,n—1do

Query ggt) = Vf(wgt);w(i—i- 1));

Choose ngt) := " and update
¢ e il
t t (¢
Wipy = Wy =0 My

8: end for

9: Set w; := wgf) and my; = msf);
10: end for
11: OQutput: Choose wr € {wp, - ,wr_1} at random with probability

7 — — Mt
Plivy = i) = o
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Assumption

There exists G > 0 such that ||Vf{z;9)|| < G, Va € dom (F) and i € [n].

This assumption is slightly stronger than assumption 1(c) (Generalized
bounded variance).
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Theorem

Let {wgt)},?;l be generated by Algorithm 2 with a LR ngt) := "I and
0 <mny < 7 for t > 1. Then, under Assumption 1(a)-(b) and Assumption
2, we have

) A POy f?) 46" G
E[|VF 2] < &+ P GE =1 + ,
[H ('U)T)” ] (Z;il 77t)(1 B /Bn) <Z,3;1 N 1— ,8”

where &; := max(n, 7:—1) for t > 2, & =y, and

~ 1 ~
A= 20F(@) - 1+ (g +m) IVA@)IP + 2078

With a constant learning rate, the convergence rate of Algorithm 2 is

o (URE) ~ R+ IVR@ + &)
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EXPERIMENTS




We compare our SMG with SGD and two other methods: SGD with
Momentum [Polyak, 1964] and Adam [Kingma and Ba, 2014] using the
following architectures:

» Fully connected network (LeNet-300-100 [LeCun et al., 1998]) for
the Fashion-MNIST dataset.

» Convolutional neural network (LeNet-5 [LeCun et al., 1998]) for the
CIFAR-10 dataset.

Figure: Fashion-MNIST dataset (left) and CIFAR-10 dataset (right).?

’Image source: https://www.tensorflow.org/
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Results - Neural Networks
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Figure: The train loss produced by SMG, SGD, SGD-M, and Adam.
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Figure: The train loss reported by SMG with different 3.
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Experiments - Non-convex Logistic Regression

We consider the following non-convex binary classification problem:

n

min {F(w) = %Z [log(l + exp(—yz; w)) + )\T(w)] },

wers i=1
where {(z;, y;)}11 : a set of training samples,
d
L&
r(w) = = a nonconvex regularizer,
(w) =3 ; T g

A :=0.01, a regularization parameter.

We did the similar experiments on two classification datasets w8a and
ijcnnl from LIBSVM.
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Results - Non-convex Logistic Regression
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Figure: The train loss produced by SMG, SGD, SGD-M, and Adam.
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Figure: The train loss produced by SMG under different values of .
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Our Contributions

(a) We develop SMG, a novel shuffling gradient-based method with
momentum for the finite-sum nonconvex minimization problem.

(b) We establish the convergence of our method and achieve the
state-of-the-art O (1/7%/3) convergence rate for all the shuffling
strategies. When using a random reshuffling scheme, this rate is
improved by n!/3.

(c) We study and provide theoretical results for different learning rates,
including diminishing, exponential, and cosine scheduled schemes.

(d) We analyze the convergence of a variant with traditional momentum
update and achieve the same O(1/T%/3) epoch-wise rate using
single shuffling strategies.
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THANK YOU!!!

Trang H. Tran - htt27Q@cornell.edu
https://htt-trangtran.github.io/
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