SMG: A Shuffling Gradient-Based Method with Momentum

The 38th International Conference on Machine Learning (ICML 2021) July 2021

Trang H. Tran (Cornell), Lam M. Nguyen (IBM Research), Quoc Tran-Dinh (UNC)

THE UNIVERSITY NORTH CAROLINA at CHAPEL HILL

INTRODUCTION

Problem Description

We consider the following finite-sum minimization:

$$\min_{w \in \mathbb{R}^d} \Big\{ F(w) := \frac{1}{n} \sum_{i=1}^n f(w; i) \Big\},\tag{1}$$

where $f(\cdot; i) : \mathbb{R}^d \to \mathbb{R}$ is a given smooth and possibly nonconvex function for $i \in [n] := \{1, \dots, n\}$.

Figure: Neural network.¹

¹Image source: https://www.ibm.com/

Trang H. Tran, Lam M. Nguyen, Quoc Tran-Dinh

SMG: A Shuffling Gradient-Based Method with Momentum

Regular (Standard) Scheme vs. Shuffling Scheme

- 1. Regular (Standard) Scheme
 - Uniformly at random: at each iteration of epoch t, sample an index i uniformly at random from [n] := {1,...,n}.

Regular (Standard) Scheme vs. Shuffling Scheme

1. Regular (Standard) Scheme

► Uniformly at random: at each iteration of epoch t, sample an index i uniformly at random from [n] := {1,...,n}.

1 2 3 ...
$$n-1$$
 n

1 epoch = n gradient evaluations

Regular (Standard) Scheme vs. Shuffling Scheme

1. Regular (Standard) Scheme

▶ Uniformly at random: at each iteration of epoch *t*, sample an index *i* uniformly at random from [*n*] := {1,...,*n*}.

1 2 3 ...
$$n-1$$
 n

1 epoch = n gradient evaluations

- 2. Shuffling Scheme
 - Incremental Gradient: for all epoch t, use a fixed permutation $\pi^{(t)} := \{1, \dots, n\}.$
 - Shuffle Once: at the first epoch t = 1, random shuffle a permutation π^(t) from [n] := {1,...,n} and use it for all epochs.
 - Random Reshuffling: at epoch t, random shuffle a permutation π^(t) from [n] := {1,...,n}.

ALGORITHMS

Shuffling Momentum Gradient - SMG

Algorithm 1 Shuffling Momentum Gradient (SMG)

1: Initialization: Choose
$$\tilde{w}_0 \in \mathbb{R}^d$$
 and set $\tilde{m}_0 := \mathbf{0}$.
2: for $t := 1, 2, \dots, T$ do
3: Set $w_0^{(t)} := \tilde{w}_{t-1}; m_0^{(t)} := \tilde{m}_{t-1};$ and $v_0^{(t)} := \mathbf{0};$
4: Generate a deterministic or random permutation $\pi^{(t)}$ of $[n];$
5: for $i := 0, \dots, n-1$ do
6: Query $g_i^{(t)} := \nabla f(w_i^{(t)}; \pi^{(t)}(i+1));$
7: Choose $\eta_i^{(t)} := \frac{\eta_t}{n}$ and update

$$\begin{cases} m_{i+1}^{(t)} := \beta m_0^{(t)} + (1-\beta) g_i^{(t)} \\ w_{i+1}^{(t)} := w_i^{(t)} + \frac{1}{n} g_i^{(t)} \\ w_{i+1}^{(t)} := w_i^{(t)} - \eta_i^{(t)} m_{i+1}^{(t)}; \end{cases}$$
8: end for
9: Set $\tilde{w}_t := w_n^{(t)}$ and $\tilde{m}_t := v_n^{(t)};$
10: end for
11: Output: Choose $\hat{w}_T \in \{\tilde{w}_0, \dots, \tilde{w}_{T-1}\}$ at random with probability
 $\mathbb{P}[\hat{w}_T = \tilde{w}_{t-1}] = \frac{\eta_t}{\sum_{i=1}^T \eta_t}.$

Assumptions

Assumption 1

Problem (1) satisfies:

- (a) **(Boundedness)** $F_* := \inf_{w \in \mathbb{R}^d} F(w) > -\infty.$
- (b) (*L*-smoothness) $f(\cdot; i)$ is *L*-smooth for all $i \in [n]$, i.e., there exists a constant L > 0 such that for all $w, w' \in \text{dom}(F)$:

$$\|\nabla f(w; i) - \nabla f(w'; i)\| \le L \|w - w'\|.$$
(2)

(c) (Generalized bounded variance) There exist two finite constants $\Theta, \sigma \ge 0$ such that for any $w \in \text{dom}(F)$:

$$\frac{1}{n}\sum_{i=1}^{n} \|\nabla f(w;i) - \nabla F(w)\|^{2} \le \Theta \|\nabla F(w)\|^{2} + \sigma^{2}.$$
 (3)

Theorem 1

Suppose that Assumption 1 holds for (1). Let $\{w_i^{(t)}\}_{t=1}^T$ be generated by Algorithm 1 with a fixed momentum weight $0 \le \beta < 1$ and an epoch learning rate $\eta_i^{(t)} := \frac{\eta_t}{n}$ for every $t \ge 1$. Assume that $\eta_0 = \eta_1, \eta_t \ge \eta_{t+1}$, and $0 < \eta_t \le \frac{1}{L\sqrt{K}}$ for $t \ge 1$, where $K := \max\left\{\frac{5}{2}, \frac{9(5-3\beta)(\Theta+1)}{1-\beta}\right\}$. Then $\mathbb{E}\left[\|\nabla F(\hat{w}_T)\|^2\right] \le \frac{4[F(\tilde{w}_0) - F_*]}{(1-\beta)\sum_{t=1}^T \eta_t} + \frac{9\sigma^2 L^2(5-3\beta)}{(1-\beta)}\left(\frac{\sum_{t=1}^T \eta_{t-1}^3}{\sum_{t=1}^T \eta_t}\right)$.

This result is flexible enough to cover multiple different learning rates.

Corollary

Corollary (Constant learning rate)

Let us fix the number of epochs $T \ge 1$, and choose a constant learning rate $\eta_t := \frac{\gamma}{T^{1/3}}$ for some $\gamma > 0$ such that $\frac{\gamma}{T^{1/3}} \le \frac{1}{L\sqrt{K}}$ for $t \ge 1$ in Algorithm 1. Then, under the conditions of Theorem 1:

$$\mathbb{E}\left[\|\nabla F(\hat{w}_T)\|^2\right] \le \frac{1}{T^{2/3}} \left(\frac{4[F(\tilde{w}_0) - F_*]}{(1-\beta)\gamma} + \frac{9\sigma^2(5-3\beta)L^2\gamma^2}{(1-\beta)}\right)$$

With a constant LR, the convergence rate of SMG is exactly expressed as

$$\mathcal{O}\left(\frac{[F(\tilde{w}_0) - F_*] + \sigma^2}{T^{2/3}}\right),\,$$

which matches the best known rate in the literature in term of T for general shuffling-type strategies [Nguyen et al., 2020].

Other learning rate schemes

Diminishing learning rate [Nguyen et al., 2020]:

$$\eta_t := \frac{\gamma}{(t+\lambda)^{\alpha}} \quad \text{where } \alpha, \gamma > 0, \text{ and } \lambda \geq 0.$$

Choosing $\alpha = 1/3$, the convergence rate of SMG is $\mathcal{O}(T^{-2/3}\log(T))$ in epoch.

Other learning rate schemes

Diminishing learning rate [Nguyen et al., 2020]:

$$\eta_t := \frac{\gamma}{(t+\lambda)^{\alpha}} \quad \text{where } \alpha, \gamma > 0, \text{ and } \lambda \ge 0.$$

Choosing $\alpha = 1/3$, the convergence rate of SMG is $\mathcal{O}(T^{-2/3}\log(T))$ in epoch.

Exponential learning rate [Li et al., 2020]:

$$\eta_t:=rac{\gamma lpha^t}{T^{1/3}}, \quad ext{where } \gamma>0,
ho>0, ext{ and } lpha:=
ho^{1/T}\in(0,1).$$

Cosine learning rate [Loshchilov and Hutter, 2017, Smith, 2017]:

$$\eta_t := rac{\gamma}{T^{1/3}} \left(1 + \cos rac{t \pi}{T}
ight), \quad ext{where } \gamma > 0.$$

The scheduled exponential and cosine learning rates still preserve our best known convergence rate $\mathcal{O}(T^{-2/3})$.

Theorem RR

Theorem 2

Suppose that Assumption 1 holds for (1). Let $\{w_i^{(t)}\}_{t=1}^T$ be generated by Algorithm 1 under a randomized reshuffling strategy, a fixed momentum weight $0 \le \beta < 1$, and an epoch learning rate $\eta_i^{(t)} := \frac{\eta_t}{n}$ for every $t \ge 1$. Assume that $\eta_t \ge \eta_{t+1}$ and $0 < \eta_t \le \frac{1}{L\sqrt{D}}$ for $t \ge 1$, where $D = \max\left(\frac{5}{3}, \frac{6(5-3\beta)(\Theta+n)}{n(1-\beta)}\right)$ and $\eta_0 = \eta_1$. Then

$$\mathbb{E}\left[\|\nabla F(\hat{w}_T)\|^2\right] \le \frac{4\left[F(\tilde{w}_0) - F_*\right]}{(1-\beta)\sum_{t=1}^T \eta_t} + \frac{6\sigma^2(5-3\beta)L^2}{n(1-\beta)} \left(\frac{\sum_{t=1}^T \eta_{t-1}^3}{\sum_{t=1}^T \eta_t}\right).$$

With a randomized reshuffling strategy and constant learning rates, the convergence rate of SMG is improved to

$$\mathcal{O}\left(\frac{[F(\tilde{w}_0) - F_*] + \sigma^2}{n^{1/3} T^{2/3}}\right),$$

which matches the best known rate in the literature in term of T for general shuffling-type strategies [Mishchenko et al., 2020].

Trang H. Tran, Lam M. Nguyen, Quoc Tran-Dinh

Single Shuffling Momentum Gradient

Algorithm 2 Single Shuffling Momentum Gradient

1: Initialization: Choose
$$\tilde{w}_0 \in \mathbb{R}^d$$
 and set $\tilde{m}_0 := \mathbf{0}$;
2: Generate a permutation π of $[n]$;
3: for $t := 1, 2, \dots, T$ do
4: Set $w_0^{(t)} := \tilde{w}_{t-1}$ and $m_0^{(t)} := \tilde{m}_{t-1}$;
5: for $i := 0, \dots, n-1$ do
6: Query $g_i^{(t)} := \nabla f(w_i^{(t)}; \pi(i+1))$;
7: Choose $\eta_i^{(t)} := \frac{\eta_t}{n}$ and update

$$\begin{cases} m_{i+1}^{(t)} := \beta m_i^{(t)} + (1-\beta) g_i^{(t)} \\ w_{i+1}^{(t)} := w_i^{(t)} - \eta_i^{(t)} m_{i+1}^{(t)}$$
;
8: end for
9: Set $\tilde{w}_t := w_n^{(t)}$ and $\tilde{m}_t := m_n^{(t)}$;
10: end for
11: Output: Choose $\hat{w}_T \in \{\tilde{w}_0, \dots, \tilde{w}_{T-1}\}$ at random with probability
 $\mathbb{P}[\hat{w}_T = \tilde{w}_{t-1}] = \frac{\eta_t}{\sum_{t=1}^{T} \eta_t}$.

Assumption 2 (Bounded gradient)

There exists G > 0 such that $\|\nabla f(x; i)\| \leq G$, $\forall x \in \text{dom}(F)$ and $i \in [n]$.

This assumption is slightly stronger than assumption 1(c) (Generalized bounded variance).

Theorem

Theorem 3

Let $\{w_i^{(t)}\}_{t=1}^T$ be generated by Algorithm 2 with a LR $\eta_i^{(t)} := \frac{\eta_t}{n}$ and $0 < \eta_t \leq \frac{1}{L}$ for $t \geq 1$. Then, under Assumption 1(a)-(b) and Assumption 2, we have

$$\mathbb{E}\left[\|\nabla F(\hat{w}_T)\|^2\right] \leq \frac{\Delta_1}{\left(\sum_{t=1}^T \eta_t\right)(1-\beta^n)} + L^2 G^2 \left(\frac{\sum_{t=1}^T \xi_t^3}{\sum_{t=1}^T \eta_t}\right) + \frac{4\beta^n G^2}{1-\beta^n},$$

where $\xi_t := \max(\eta_t, \eta_{t-1})$ for $t \ge 2$, $\xi_1 = \eta_1$, and

$$\Delta_1 := 2[F(\tilde{w}_0) - F_*] + \left(\frac{1}{L} + \eta_1\right) \|\nabla F(\tilde{w}_0)\|^2 + 2L\eta_1^2 G^2.$$

With a constant learning rate, the convergence rate of Algorithm 2 is

$$\mathcal{O}\left(\frac{L[F(\tilde{w}_0) - F_*] + \|\nabla F(\tilde{w}_0)\|^2 + G^2}{T^{2/3}}\right)$$

EXPERIMENTS

Experiments - Neural Networks

We compare our SMG with SGD and two other methods: SGD with Momentum [Polyak, 1964] and Adam [Kingma and Ba, 2014] using the following architectures:

- Fully connected network (LeNet-300-100 [LeCun et al., 1998]) for the Fashion-MNIST dataset.
- Convolutional neural network (LeNet-5 [LeCun et al., 1998]) for the CIFAR-10 dataset.

Figure: Fashion-MNIST dataset (left) and CIFAR-10 dataset (right).²

²Image source: https://www.tensorflow.org/

Results - Neural Networks

Figure: The train loss produced by SMG, SGD, SGD-M, and Adam.

Figure: The train loss reported by SMG with different β .

We consider the following non-convex binary classification problem:

$$\begin{split} \min_{w \in \mathbb{R}^d} \Big\{ F(w) &:= \frac{1}{n} \sum_{i=1}^n \Big[\log(1 + \exp(-y_i x_i^\top w)) + \lambda r(w) \Big] \Big\}, \\ \text{where } \{ (x_i, y_i) \}_{i=1}^n : \text{a set of training samples,} \\ r(w) &:= \frac{1}{2} \sum_{j=1}^d \frac{w_j^2}{1 + w_j^2}, \text{ a nonconvex regularizer,} \\ \lambda &:= 0.01, \text{ a regularization parameter.} \end{split}$$

We did the similar experiments on two classification datasets w8a and ijcnn1 from LIBSVM.

Results - Non-convex Logistic Regression

Figure: The train loss produced by SMG, SGD, SGD-M, and Adam.

Figure: The train loss produced by SMG under different values of β .

- (a) We develop SMG, a novel shuffling gradient-based method with momentum for the finite-sum nonconvex minimization problem.
- (b) We establish the convergence of our method and achieve the state-of-the-art $\mathcal{O}\left(1/T^{2/3}\right)$ convergence rate for all the shuffling strategies. When using a random reshuffling scheme, this rate is improved by $n^{1/3}$.
- (c) We study and provide theoretical results for different learning rates, including diminishing, exponential, and cosine scheduled schemes.
- (d) We analyze the convergence of a variant with traditional momentum update and achieve the same $\mathcal{O}(1/T^{2/3})$ epoch-wise rate using single shuffling strategies.

References I

Kingma, D. P. and Ba, J. (2014).

ADAM: A Method for Stochastic Optimization.

Proceedings of the 3rd International Conference on Learning Representations (ICLR), abs/1412.6980.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324.

Li, L., Zhuang, Z., and Orabona, F. (2020). Exponential step sizes for non-convex optimization. *arXiv preprint arXiv:2002.05273*.

Loshchilov, I. and Hutter, F. (2017). Sgdr: Stochastic gradient descent with warm restarts.

Mishchenko, K., Khaled Ragab Bayoumi, A., and Richtárik, P. (2020). Random reshuffling: Simple analysis with vast improvements. *Advances in Neural Information Processing Systems*, 33. Nguyen, L. M., Tran-Dinh, Q., Phan, D. T., Nguyen, P. H., and van Dijk, M. (2020).

A unified convergence analysis for shuffling-type gradient methods. arXiv preprint arXiv:2002.08246.

Polyak, B. T. (1964).

Some methods of speeding up the convergence of iteration methods. USSR Computational Mathematics and Mathematical Physics, 4(5):1–17.

Smith, L. N. (2017).

Cyclical learning rates for training neural networks.

In 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 464–472. IEEE.

THANK YOU!!!

Trang H. Tran - htt27@cornell.edu https://htt-trangtran.github.io/