

When All We Need is a Piece of the Pie:

A Generic Framework for Optimizing Two-way Partial AUC

Zhiyong Yang, Qianqian Xu, Shilong Bao, Yuan He,

Background

• Traditional classification methods adopt error-rate-guided ERM.

Background

• Such ERM paradigm is problematic for imbalanced/long-tailed datasets

• It is easy to get a high accuracy score by simply predicting all the samples as the majority class!

Background

If you can not measure it, you can not improve it

~Lord Kelvin

Seek out a suitable metric for imbalanced datasets

Receiver Operating Characteristic Curve (ROC)

• **ROC curve**: True Positive Rate (TPR) vs. False Positive Rate (FPR).

Decision with a fixed threshold

label: $y \in \{0, 1\}$

classifier: f(x), threshold: t

prediction: $\hat{y} = \mathbb{1}[f(\boldsymbol{x}) > t]$

Area Under the ROC Curve (AUC)

• AUC is the area under the ROC curve (over all possible thresholds)

$$\left[\mathsf{AUC} = \int_0^1 \mathsf{TPR}\left(\mathsf{FPR}^{-1}(\theta)\right) \ d\theta\right]$$

Involves a non-trivial integral

Area Under the ROC Curve (AUC)

• A much simpler reformulation:

$$\mathsf{AUC} = \mathbb{P}\left[f(m{x}) > f(m{x'}) | y = 1, y' = -1\right]$$

• A measure of how well the two class conditional p.d.fs are separated

J. A. Hanley and B. J. McNeil. The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology, 143(1):29–36, 1982.

AUC is too informative

Global integration

$$AUC = \int_0^1 TPR \left(FPR^{-1}(\theta) \right) d\theta$$

- Considers all possible TPR and FPR
- Real-world problems have performance **constraints** (*e.g.*, TPR>0.5, FPR < 0.1)

Consider Local analog of AUC

One Way Partial AUC (OPAUC)

- AUC involves all possible TPRs and FPRs
- Many real-world applications have specific requirement on FPR
- Solution: Measure the partial area of ROC

Two Way Partial AUC (TPAUC)

- A reasonable case should simultaneously enjoy a low FPR and a high TPR
- TPAUC measures the AUC within such a local area

How to optimize local AUCs

- OPAUC
 - Cutting Plane Solvers [Narasimhan et.al. 2013; Narasimhan et.al. 2017; Tomoharu et.al. 2020]
 - Projected Sub-gradient Descent [Narasimhan et.al. 2013; Narasimhan et.al. 2017; Yamaguchi et.al. 2020]
 - Evolutionary Algorithms [Fan et.al. 2019]
 - Sampling Algorithms [Bai et.al. 2020a, b]

Not support the **end-toend** training!

- TPAUC
 - ?

- Requires a **sampling** process
- Do not have theoretical guarantee

Optimize TPAUC in an end-to-end fashion

Can We estimate TPAUC from OPAUC?

$$\mathsf{OPAUC} = \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} \mathsf{TPR} \left(\mathsf{FPR}^{-1}(\theta) \right) \ d\theta$$

1

approximate ξ with a fixed α

TPAU

Direct optimization is necessary!

 ξ is a function of the scoring function f

TPAUC1 > TPAUC2: S5+S7 < S6+S7

OPAUC2 > OPAUC1: S5+S7+S8+S9 > S7+S9+S6

Reformulation of TPAUC

$$\mathsf{AUC}^{\alpha}_{\beta}(f_{\theta},\mathcal{S}) = \mathbb{E}\left[\mathbf{1}\left[f(\boldsymbol{x}) > f(\boldsymbol{x'}), f(\boldsymbol{x}) \leq t_{1-\alpha}, f(\boldsymbol{x'}) \geq t_{\beta}|y=1, y'=-1\right]\right]$$

- Requires empirical estimation of the **expectation**
- Requires empirical estimation of the quantiles

Empirical Estimation of TPAUC

$$\mathsf{A\hat{\mathsf{U}}\mathsf{C}}^{\alpha}_{\beta}(f_{\theta},\mathcal{S}) = \frac{1}{n_{+}^{\alpha}n_{-}^{\beta}}\sum_{i=1}^{n_{+}^{\alpha}}\sum_{j=1}^{n_{-}^{\beta}}\mathbf{1}\left[f(\boldsymbol{x}) > f(\boldsymbol{x'})\right] \cdot \mathbf{1}\left[f(\boldsymbol{x}) \leq \hat{\boldsymbol{t}}_{\alpha}, f(\boldsymbol{x'}) \geq \hat{\boldsymbol{t}}_{\beta}|y=1, y'=-1\right]$$

empirical expectation

empirical quantile

Theorem 1 Asymptotic Normality of the Bias (Informal) [Yang-Lu-Lyu-Hu 2019]

$$\hat{AUC}_{\alpha}^{\beta} - AUC_{\alpha}^{\beta} \xrightarrow{d} \mathcal{N}(0, \sigma^{2}), \quad n_{+}, n_{-} \to \infty$$

$$\sigma = \mathcal{O}\left(\sqrt{\frac{1}{n_{+}} + \frac{1}{n_{-}}}\right)$$

score

nong

Empirical Estimation of TPAUC

$$\operatorname{AUC}_{\alpha}^{\beta}\left(f_{\boldsymbol{\theta}}, \mathcal{S}\right) = 1 - \sum_{i=1}^{n_{+}^{\alpha}} \sum_{j=1}^{n_{-}^{\beta}} \frac{\ell_{0,1}\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{(i)}^{+}\right) - f\left(\boldsymbol{x}_{(j)}^{-}\right)\right)}{n_{+}^{\alpha}n_{-}^{\beta}}$$

Optimize Empirical TPAUC approximately

all negative instances.

Step1 Surrogate Loss Minimization

• Replace $\ell_{0,1}$ with a continuous surrogate ℓ

$$(OP_0) \min_{\theta} \hat{\mathcal{R}}_{\alpha,\beta}^{\ell}\left(S, f_{\theta}\right) = \sum_{i=1}^{n_+^{\alpha}} \sum_{j=1}^{n_-^{\beta}} \frac{\ell\left(f_{\theta}\left(\boldsymbol{x}_{(i)}^+\right) - f\left(\boldsymbol{x}_{(j)}^-\right)\right)}{n_+^{\alpha} n_-^{\beta}}$$

$$\ell_{\text{exp}}(t) = \exp(-t), \ell_{sq}(t) = (1-t)^2$$

On Machine Learnina

- R̂^ℓ_{α,β} (S, f_θ) is still not differentiable!
 Calculating x⁺_(i), x⁻_(j) requires sorting the scores of positive and negative instances.

Step2 Bi-level optimization

The original optimization problem is equivalent to the following problem:

$$\min_{\boldsymbol{\theta}} \frac{1}{n_{+}n_{-}} \sum_{i=1}^{n_{+}} \sum_{j=1}^{n_{-}} v_{i}^{+} \cdot v_{j}^{-} \cdot \ell\left(f_{\boldsymbol{\theta}}, \boldsymbol{x}_{i}^{+}, \boldsymbol{x}_{j}^{-}\right)$$
s.t. $v_{+} = \underset{\boldsymbol{v}_{i}^{+} \in [0,1], \sum_{i=1}^{n_{+}} v_{i}^{+} \leq n_{+}^{\alpha}}{\operatorname{argmax}} \sum_{i=1}^{n_{+}} \left(v_{i}^{+} \cdot \left(1 - f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}^{+}\right)\right)\right)$

$$v_{-} = \underset{\boldsymbol{v}_{j}^{-} \in [0,1], \sum_{j=1}^{n_{-}} v_{j}^{-} \leq n_{-}^{\beta}}{\operatorname{argmax}} \sum_{j=1}^{n_{-}} \left(v_{j}^{-} \cdot f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{j}^{-}\right)\right)$$

Outer-level problem

optimization based on the chosen instances

The ball constraints makes the optimization intractable

where

$$\ell\left(f_{oldsymbol{ heta}}, oldsymbol{x}_{i}^{+}, oldsymbol{x}_{j}^{-}\right) = \ell\left(f_{oldsymbol{ heta}}\left(oldsymbol{x}_{i}^{+}\right) - f_{oldsymbol{ heta}}\left(oldsymbol{x}_{j}^{-}\right)\right)$$

Inner-level problem
a sparse sample selection
process

Step2 Bi-level optimization

• Transform the ℓ_1 ball constraints to ℓ_1 penalty terms (note that v_+, v_- are non-negative):

$$v_{+} = \underset{v_{i}^{+} \in [0,1], \sum_{i=1}^{n_{+}} v_{i}^{+} \leq n_{+}^{\alpha}}{\operatorname{argmax}} \sum_{i=1}^{n_{+}} \left(v_{i}^{+} \cdot \left(1 - f_{\theta} \left(\boldsymbol{x}_{i}^{+} \right) \right) \right)$$

$$v_{-} = \underset{v_{j}^{-} \in [0,1], \sum_{j=1}^{n_{-}} v_{j}^{-} \leq n_{-}^{\beta}}{\operatorname{argmax}} \sum_{j=1}^{n_{-}} \left(v_{j}^{-} \cdot f_{\theta} \left(\boldsymbol{x}_{j}^{-} \right) \right)$$

$$v_{+} = \underset{v_{i}^{+} \in [0,1]}{\operatorname{argmax}} \sum_{i=1}^{n_{+}} \left(v_{i}^{+} \cdot \left(1 - f_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{i}^{+} \right) \right) - \lambda^{+} \cdot v_{i}^{+} \right)$$
$$v_{-} = \underset{v_{j}^{-} \in [0,1]}{\operatorname{argmax}} \sum_{j=1}^{n_{-}} \left(v_{j}^{-} \cdot f_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{j}^{-} \right) - \lambda^{-} \cdot v_{j}^{-} \right)$$

Step2 Bi-level optimization

• Replace the sparsity-inducing ℓ_1 penalty with a smooth surrogate φ_{γ}

Sample Weights
Choose what to
learn in the outer level
problem

$$(OP_{1}) \min_{\boldsymbol{\theta}} \frac{1}{n_{+}^{\alpha} n_{-}^{\beta}} \sum_{i=1}^{n_{+}} \sum_{j=1}^{n_{-}} v_{i}^{+} \cdot v_{j}^{-} \cdot \ell \left(f_{\boldsymbol{\theta}}, \boldsymbol{x}_{i}^{+}, \boldsymbol{x}_{j}^{-} \right)$$
s.t $v_{+} = \underset{v_{i}^{+} \in [0,1]}{\operatorname{argmax}} \sum_{i=1}^{n^{+}} \frac{\left(v_{i}^{+} \cdot \left(1 - f_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{i}^{+} \right) \right) - \varphi_{\gamma} \left(v_{i}^{+} \right) \right)}{v_{i}^{-} \in [0,1]} \sum_{j=1}^{n_{-}} \frac{\left(v_{j}^{-} \cdot f_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{j}^{-} \right) - \varphi_{\gamma} \left(v_{j}^{-} \right) \right)}{v_{j}^{-} \in [0,1]}$

Penalty FunctionChoose the weighting strategy

The connection between weight and the penalty is the key

Step3 Dual Correspondence

$$v_{+} = \underset{v_{i}^{+} \in [0,1]}{\operatorname{argmax}} \sum_{i=1}^{n^{+}} \left(v_{i}^{+} \cdot \left(1 - f_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{i}^{+} \right) \right) - \varphi_{\gamma} \left(v_{i}^{+} \right) \right)$$

$$v_{-} = \underset{v_{j}^{-} \in [0,1]}{\operatorname{argmax}} \sum_{j=1} \left(\underbrace{v_{j}^{-}} \cdot f_{\theta} \left(\boldsymbol{x}_{j}^{-} \right) - \varphi_{\gamma} \left(v_{j}^{-} \right) \right)$$

With a Closed-form Solution

$$v_i^+ = \frac{\psi_{\gamma}}{1 - f_{\theta}(x_i^+)} \quad v_j^- = \frac{\psi_{\gamma}}{1 - f_{\theta}(x_j^-)}$$

weighting function

Under what condition can we realize such a simplification?

Step 3 Dual Correspondence

Definition 1 Calibrated Smooth Penalty Function

A penalty function $\varphi_{\gamma}(x): \mathbb{R}_+ \to \mathbb{R}$ satisfies the following regularities:

- (A) φ_{γ} has continuous third-order derivatives.
- (B) φ_{γ} is strictly increasing in the sense that $\varphi'_{\gamma}(x) > 0$.
- (C) φ_{γ} is strictly convex in the sense that $\varphi_{\gamma}''(x) > 0$.
- (D) φ_{γ} has positive third-order derivatives in the sense that $\varphi_{\gamma}^{\prime\prime\prime}(x) > 0$.

Definition 2 Calibrated Weighting Function

A weighting function $\psi_{\gamma}(x):[0,1]\to \mathrm{Rng}$, where $\mathrm{Rng}\subseteq [0,1]$, satisfies the following regularities:

- (A) ψ_{γ} has continuous second-order derivatives.
- (B) ψ_{γ} is strictly increasing in the sense that $\psi'_{\gamma}(x) > 0$.
- (C) ψ_{γ} is strictly concave in the sense that $\psi_{\gamma}''(x) < 0$.

Step 3 Dual Correspondence

Proposition 1

Given a strictly convex function φ_{γ} , and define $\psi_{\gamma}(t)$

$$\psi_{\gamma}(t) = \underset{v \in [0,1]}{\operatorname{argmax}} \quad v \cdot t - \varphi_{\gamma}(v)$$

Then we can draw the following conclusions:

(a) If φ_{γ} is a calibrated smooth penalty function, we have $\psi_{\gamma}(t) = \varphi_{\gamma}^{\prime - 1}(t)$.

$$\psi_{\gamma}(t) = \varphi_{\gamma}^{\prime - 1}(t).$$

penalty to weight

(b) If ψ_{γ} is a calibrated weighting function such that $v = \psi_{\gamma}(t)$, we have

$$\varphi_{\gamma}(v) = \int \psi_{\gamma}^{-1}(v)dv + \text{const.}$$

weight to penalty

This provides a simple way to establish a surrogate optimization problem of TPAUC

Step 3 Dual Correspondence

• Given the penalty functions φ_{γ} ,

$$v_i^+ = \psi_{\gamma} (1 - f_{\theta}(\mathbf{x}_i^+)), v_j^- = \psi_{\gamma} (f_{\theta}(\mathbf{x}_j^-)), v_i^+, v_j^- \in [0, 1]$$

If ψ_{γ} has a closed-form expression

• Weighted empirical risk:

Cancel the inner optimization problem

$$\hat{\mathcal{R}}_{\psi}^{\ell}\left(\mathcal{S}, f_{\boldsymbol{\theta}}\right) = \frac{1}{n_{+}n_{-}} \sum_{i=1}^{n_{+}} \sum_{j=1}^{n_{-}} \psi_{\gamma} \left(1 - f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}^{+}\right)\right) \psi_{\gamma} \left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{j}^{-}\right)\right) \cdot \ell \left(f_{\boldsymbol{\theta}}, \boldsymbol{x}_{i}^{+}, \boldsymbol{x}_{j}^{-}\right)$$

International Conference On Machine Learning

Instantiations of the Generic Framework

Example 1 (Polynomial Surrogate Model).

$$\varphi_{\gamma}^{\text{poly}}(t) = \frac{1}{\gamma} \cdot t^{\gamma}, \psi_{\gamma}^{\text{poly}}(t) = t^{\frac{1}{\gamma - 1}}, \gamma > 2$$

Example 2 (Exponential Surrogate Model).

$$\varphi_{\gamma}^{\exp}(t) = \frac{(1-t)(\log(1-t)-1)+1}{\gamma}$$

$$\psi_{\gamma}^{\exp}(t) = 1 - e^{-\gamma t}$$

Convex weighting

Concave weighting

S₁/S₂ should be large

Proposition 2 (Informal).

• Concave functions ψ are always easier to induces an upper bound of the original objective function

$$\hat{\mathcal{R}}_{\psi}^{\ell}\left(\mathcal{S}, f_{\boldsymbol{\theta}}\right) > \hat{\mathcal{R}}_{\alpha, \beta}^{\ell}\left(S, f_{\boldsymbol{\theta}}\right)$$

true risk

• A **sufficient** condition for achieving the **upper** bound:

$$\sup_{p \in (0,1), q = -\frac{p}{1-p}} \left[\rho_p - \xi_q \right] \ge 0,$$

$$\rho_p = \frac{\left(\bar{\mathbb{E}}_{x^+, x^- \in \mathcal{I}_2} \left[v_+^p \cdot v_-^p \right] \right)^{1/p}}{\left(\bar{\mathbb{E}}_{x^+ \in \mathcal{I}_1^+, x^- \in \mathcal{I}_1^-} \left[(1 - v_+ v_-)^2 \right] \right)^{1/2}},$$

$$\xi_q = \frac{\alpha\beta}{1 - \alpha\beta} \cdot \frac{\left(\bar{\mathbb{E}}_{x^+, x^- \in \mathcal{I}_2}(\ell_{i,j}^2)\right)^{1/2}}{\left(\bar{\mathbb{E}}_{x^+ \in \mathcal{I}_1^+, x^- \in \mathcal{I}_1^-}(\ell_{i,j}^q)\right)^{1/q}}.$$

The empirical distribution has significant mass over instances with moderate difficulty

Validation on simulated Dataset

$$f(x^+) \sim \mathcal{N}(0.5, 0.08)$$

$$f(x^{-}) \sim \mathcal{N}(0.3, 0.08)$$

Generate 100 points for each class

plot for 50 such trails

$$\rho_p > \xi_q$$

Theoretical Analysis: Excess risk bound

Theorem 2 (Informal).

The following inequality holds with high probability:

$$\mathcal{R}_{AUC}^{\alpha,\beta}\left(f_{\boldsymbol{\theta}},\mathcal{S}\right) \leq \hat{\mathcal{R}}_{\psi}^{\ell}\left(f_{\boldsymbol{\theta}},\mathcal{S}\right) + \tilde{\mathcal{O}}\left(\left(\frac{\text{VC}}{n_{+}}\right)^{1/2} + \left(\frac{\text{VC}}{n_{-}}\right)^{1/2}\right)$$

The empirical risk is biased

where $\tilde{\mathcal{O}}$ is the big-O complexity notation hiding the logarithm factors,

$$\mathcal{R}_{AUC}^{\alpha,\beta}\left(f_{\theta},\mathcal{S}\right) = 1 - AUC_{\alpha}^{\beta}\left(f_{\theta},\mathcal{S}\right),\,$$

and VC is the VC dimension of the hypothesis class:

$$\mathcal{T}(\mathcal{F}) \triangleq \{ \operatorname{sign} (f_{\theta}(\cdot) - \delta) : f_{\theta} \in \mathcal{F}, \delta \in \mathbb{R} \}$$

Empirical Results

Table 2. Details on the datasets.

Dataset	Pos. Class ID	Pos. Class Name	# Pos. Examples	# Neg. Examples	
CIFAR-10-LT-1	2	birds	1,508	8,907	
CIFAR-10-LT-2	1	automobiles	2,517	7,898	
CIFAR-10-LT-3	3	cats	904	9,511	
CIFAR-100-LT-1	6, 7, 14, 18, 24	insects	1,928	13,218	
CIFAR-100-LT-2	0, 51, 53, 57, 83	fruits and vegetables	885	14,261	
CIFAR-100-LT-3	15, 19, 21, 32, 38	large omnivores and herbivores	1,172	13,974	
Tiny-ImageNet-200-LT-1	24, 25, 26, 27, 28, 29	dogs	2,100	67,900	
Tiny-ImageNet-200-LT-2	11, 20, 21, 22	birds	1,400	68,600	
Tiny-ImageNet-200-LT-3	70, 81, 94, 107, 111, 116, 121, 133, 145, 153, 164, 166	vehicles	4, 200	65,800	

- We construct long-tail binary datasets with different subsets:
 - ✓ Binary CIFAR-10-LT Dataset
 - ✓ Binary CIFAR-100-LT Dataset
 - ✓ Binary Tiny-ImageNet-200-LT Dataset

• We adopt the following variant of the TPAUC metric:

$$TPAUC(\alpha, \beta) = 1 - \sum_{i=1}^{n_+^{\alpha}} \sum_{j=1}^{n_-^{\beta}} \frac{\ell_{0,1} \left(f_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{(i)}^+ \right) - f \left(\boldsymbol{x}_{(j)}^- \right) \right)}{n_+^{\alpha} n_-^{\beta}}$$

Empirical Results

We consider TPAUC with

$$\alpha = 0.3, \beta = 0.3$$

$$\alpha = 0.4, \beta = 0.4$$

$$\alpha=0.5, \beta=0.5$$

- Table 1 shows the performance comparison against other methods dealing with imbalanced data.
- The empirical results demonstrate the superiority of our proposed TPAUC algorithm.

Table 1. Performance Comparisons over different metrics and datasets, where (x, y) stands for TPAUC(x, y) in short.

			Subset1		Subset2			Subset3			
dataset	type	methods	(0.3,0.3)	(0.4,0.4)	(0.5,0.5)	(0.3,0.3)	(0.4,0.4)	(0.5,0.5)	(0.3,0.3)	(0.4,0.4)	(0.5,0.5)
CIFAR-10-LT	Competitors	CE-RW	9.09	30.86	47.99	72.83	83.33	88.71	23.47	44.44	59.69
		Focal	9.84	30.89	50.83	75.72	85.10	90.06	21.47	45.88	59.09
		CBCE	3.29	27.30	43.95	69.48	80.80	86.87	12.94	34.06	51.09
		CBFocal	9.04	31.73	48.13	77.99	86.75	91.13	21.32	43.03	59.11
		SqAUC	18.05	40.74	57.94	80.09	87.78	91.87	31.52	50.00	64.42
	_	Poly	21.43	44.41	59.10	80.66	88.07	92.15	36.54	54.48	67.19
	Ours	Exp	<u>20.86</u>	<u>41.78</u>	<u>58.38</u>	81.22	<u>87.88</u>	91.93	32.47	<u>53.86</u>	67.32
CIFAR-100-LT	Competitors	CE-RW	31.43	52.60	66.21	79.70	88.06	92.64	3.09	21.32	40.75
		Focal	36.51	61.71	73.25	83.08	90.35	93.76	8.09	28.88	49.89
		CBCE	17.53	38.79	55.19	67.91	79.32	85.82	1.84	18.46	37.04
		CBFocal	41.85	62.41	73.13	82.75	89.57	92.89	7.10	29.12	44.84
		SqAUC	63.24	76.62	84.68	91.02	93.69	94.73	41.60	60.36	70.86
	Ours-TPAUC	Poly	68.02	79.11	85.17	91.13	93.78	95.69	47.07	65.89	75.08
		Exp	63.24	<u>77.94</u>	84.62	90.69	<u>93.74</u>	<u>95.41</u>	<u>44.54</u>	64.58	73.02
Tiny-ImageNet-200-LT	Competitors	CE-RW	80.90	87.76	91.54	93.30	96.15	97.53	90.37	94.34	96.75
		Focal	81.18	88.06	91.72	93.23	96.08	97.59	91.35	94.87	96.63
		CBCE	80.64	87.58	91.17	93.77	96.52	97.77	91.66	95.19	96.79
		CBFocal	80.44	87.95	91.91	93.46	96.43	97.64	91.06	94.82	96.62
		SqAUC	80.16	87.99	91.67	93.10	96.07	97.32	92.15	<u>95.16</u>	<u>96.75</u>
	Ours-TPAUC	Poly	80.44	88.21	91.98	93.00	95.61	97.47	92.02	95.25	96.84
		Exp	82.61	89.13	92.62	93.82	96.12	97.38	91.25	94.78	96.57

Validation of the upper bound

• We show the training curve of different losses, where we consistently observe that:

$$\hat{\mathcal{R}}_{\psi}^{\ell}\left(\mathcal{S}, f_{\boldsymbol{\theta}}\right) > \hat{\mathcal{R}}_{\alpha, \beta}^{\ell}\left(\mathcal{S}, f_{\boldsymbol{\theta}}\right) > \hat{\mathcal{R}}_{\alpha, \beta}^{0-1}\left(\mathcal{S}, f_{\boldsymbol{\theta}}\right)$$

App. Surr. Loss > Surr. Loss > emp. TPAUC

• This validate the proposed proposition about concave weights.

Convex vs. Concave Weighting

- We analyze the effect of γ on CIFAR-10-Subset-1 with poly model
- The results shows that the concave function $((1-\gamma)^{-1} < 1)$ significantly outperforms convex functions $((1-\gamma)^{-1} \ge 1)$

Conclusion

Problem

How to optimize TPAUC (AUC with FPR upper bound and a TPR lower bound) in an **end-to-end** manner?

Method

A Bi-level reformulation of ERM framework for TPAUC A relaxation scheme for sample selection of the inner-level problem A generic surrogate objective function based on the dual correspondence

Theory

A sufficient condition for achieving the upper bound of the objective Concave weighting functions are easier to achieve the upper bound An $\mathcal{O}((VC/n_+ + VC/n_-)^{1/2})$ excess risk bound for the approximated ERM

Q&A