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Background 

• Traditional classification methods adopt error-rate-guided ERM.
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• Such ERM paradigm is problematic for imbalanced/long-tailed 

datasets
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• It is easy to get a high accuracy score by simply predicting 

all the samples as the majority class!



Background 

If you can not measure it,

you can not improve it

~Lord Kelvin

Seek out a suitable metric for imbalanced datasets



Receiver Operating Characteristic 

Curve (ROC)

• ROC curve: True Positive Rate (TPR) vs. False Positive Rate 

(FPR).

FPR

TPR

Decision with a fixed threshold



Area Under the ROC Curve (AUC)

• AUC is the area under the ROC curve (over all possible thresholds)

Involves a non-trivial integral 



• A much simpler reformulation:

• A measure of how well the two class conditional p.d.fs are separated

Area Under the ROC Curve (AUC)

J. A. Hanley and B. J. McNeil. The meaning and use of the area under a receiver operating characteristic 
(roc) curve. Radiology, 143(1):29–36, 1982.



AUC is too informative

FPR

TPR

• Considers all possible TPR and FPR

• Real-world problems have performance 
constraints (e.g., TPR>0.5, FPR < 0.1)

Consider Local analog of AUC

Global integration



One Way Partial AUC (OPAUC)

• AUC involves all possible TPRs and FPRs

• Many real-world applications have specific requirement on FPR

• Solution: Measure the partial area of ROC

AUC One way Partial AUC (OPAUC) 
[Dobb and Pepe 2003]



Two Way Partial AUC (TPAUC)

• A reasonable case should simultaneously enjoy a low FPR and a high 

TPR

• TPAUC measures the AUC within such a local area

OPAUC Two way Partial AUC (TPAUC)
[Yang et.al. 2019]



How to optimize local AUCs

• OPAUC

• Cutting Plane Solvers [Narasimhan et.al. 2013; Narasimhan et.al. 2017; Tomoharu et.al. 2020]

• Projected Sub-gradient Descent [Narasimhan et.al. 2013;  Narasimhan et.al. 2017; Yamaguchi et.al. 2020]

• Evolutionary Algorithms [Fan et.al. 2019]

• Sampling Algorithms [Bai et.al. 2020a, b]

• TPAUC
• ?

Not support the end-to-
end training!

• Requires a sampling process
• Do not have theoretical guarantee

Optimize TPAUC

in an end-to-end fashion



Can We estimate TPAUC from OPAUC ?

TPAUC1 > TPAUC2:  S5+S7< S6+S7

OPAUC2 > OPAUC1: S5+S7+S8+S9 > S7+S9+S6

Direct optimization is necessary !



Reformulation of TPAUC

score quantile of the positive class score quantile of the negative class 

• Requires empirical estimation of the expectation

• Requires empirical estimation of the quantiles



Empirical Estimation of TPAUC

Theorem 1 Asymptotic Normality of the Bias (Informal) [Yang-Lu-Lyu-Hu 2019]

empirical 
quantile

empirical 
expectation



Empirical Estimation of TPAUC

• loss is non-differentiable, NP-hard problem

• Empirical quantiles are still not decomposable

+ -+ + +- - -+ -- … +

achieves bottom- score

among all positive instances.

achieves top- score among

all negative instances.

Optimize Empirical TPAUC approximately 



Step1 Surrogate Loss Minimization

• Replace         with a continuous surrogate  

• is still not differentiable!

• Calculating                requires sorting the scores of    
positive and negative instances.



Step2 Bi-level optimization 

Inner-level problem
a sparse sample selection 

process

Outer-level problem 

optimization based on 

the chosen instances

The ball constraints 
makes the optimization 

intractable



• Transform the ball constraints to penalty terms (note that are
non-negative):

Step2 Bi-level optimization 



• Replace the sparsity-inducing penalty with a smooth surrogate

Step2 Bi-level optimization 

The connection between weight and the penalty is the key

Sample Weights 
Choose what to 
learn in the outer level 
problem

Penalty Function 
Choose the weighting 
strategy



Step3 Dual Correspondence 

Under what condition can we realize such a simplification ?

With a Closed-form Solution

weighting function



Step 3 Dual Correspondence

A penalty function satisfies the following regularities:

(A) has continuous third-order derivatives.

(B) is strictly increasing in the sense that

(C) is strictly convex in the sense that

(D) has positive third-order derivatives in the sense that

Definition 1 Calibrated Smooth Penalty Function

A weighting function , where                     , satisfies the following regularities: 

(A)        has continuous second-order derivatives.

(B)        is strictly increasing in the sense that

(C)        is strictly concave in the sense that

Definition 2 Calibrated Weighting Function



Step 3 Dual Correspondence 

Proposition 1

Given a strictly convex function       , and define             as  

Then we can draw the following conclusions:

(a) If is a calibrated smooth penalty function, we have

(b) If is a calibrated weighting function such that , we have

This provides a simple way to establish a surrogate 

optimization problem of TPAUC

penalty to weight

weight to penalty



Step 3 Dual Correspondence 

• Given the penalty functions       ,

If has a closed-form expression

Cancel the inner optimization 
problem• Weighted empirical risk:



Example 1 (Polynomial Surrogate Model).

Instantiations of the Generic Framework

Example 2 (Exponential Surrogate Model).



Proposition 2 (Informal).

Theoretical Analysis:
concave vs. convex weighting function

• Concave functions      are always easier to induces an 
upper bound of the original objective function

• A sufficient condition for achieving the upper bound:

surrogate  
risk

true  
risk

The empirical 
distribution
has significant mass 
over instances with 
moderate difficulty

S1/S2

should 
be large



Theoretical Analysis:
concave vs. convex weighting function

Validation on simulated Dataset



Theorem 2 (Informal).

where is the big-O complexity notation hiding the logarithm factors,

and is the VC dimension of the hypothesis class:

Theoretical Analysis:
Excess risk bound

The empirical risk 

is biased

The following inequality holds with high probability:



Empirical Results

• We construct long-tail binary datasets

with different subsets:

✓ Binary CIFAR-10-LT Dataset

✓ Binary CIFAR-100-LT Dataset

✓ Binary Tiny-ImageNet-200-LT Dataset

• We adopt the following variant of

the TPAUC metric:



Empirical Results

• We consider TPAUC with

• Table 1 shows the performance
comparison against other methods
dealing with imbalanced data.

• The empirical results demonstrate
the superiority of our proposed
TPAUC algorithm.



Validation of the upper bound
• We show the training curve of different

losses, where we consistently observe

that :

• This validate the proposed proposition

about concave weights.

App. Surr. Loss >  Surr. Loss  >  emp. TPAUC  



Convex vs. Concave Weighting 

• We analyze the effect of on CIFAR-10-Subset-1 with poly model

• The results shows that the concave function significantly outperforms convex

functions



Conclusion

Problem

Method

Theory

How to optimize TPAUC (AUC with FPR upper bound and a TPR lower bound)  
in an end-to-end manner? 

A Bi-level reformulation of ERM framework for TPAUC
A relaxation scheme for sample selection of the inner-level problem
A generic surrogate objective function based on the dual correspondence

A sufficient condition for achieving the upper bound of the objective
Concave weighting functions are easier to achieve the upper bound
An                                                 excess risk bound for the approximated ERM
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