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DAG Learning: SoTA Methods

= DAG learning plays a vital part in other machine learning sub-areas such as causal inference
However, it is proven to be NP-hard.

= Conventional DAG learning methods:
1) Make a parametric (e.g. Gaussian) assumption for continuous variables: may result in model
misspecification.
2) Perform score-and-search for discrete variables: with a constraint stating that the graph

must be acyclic. . .
A" = argmin F(A, X), subject to Ga €D
A

= DAG learning as a continuous optimization:
An equivaWclicity constraint by Zheng et al*: Ga € D 4 h(A) = tr(exp(Ad o A)) —m =0

{ontinUOU}A* =argmin F(A4,X),  subject to h(A) =0,
A

constraint
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Zheng, X., Aragam, B., Ravikumar, P. K., Xing, E. P. (2018). DAGs with NO TEARS: Continuous Optimization for Structure Learning. In Advances in Neural Information
Processing Systems (pp. 9472-9483).



An Equivalent DAG Space

Idea: Can we remove the constraint, by solving directly in the DAG space?

Reformulate the DAG space: acyclic = a (curl-free) gradient flow -g:zglr?r?é?f‘ |
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and any skew-symmetric matrix W € R™*™ W o ReLU(grad(p)) is thé Weighted
~adjacency matrix of a DAG.
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Theorem 2:

Let A € R™*™ be the weighted adjacency matrix of a DAG, then there exists a
skew-symmetric matrix 1 ¢ R™*™ and a potential function p € L*(V) = R™ such
that A = W o ReLU(grad(p)) .
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An Efficient Projection Algorithm

Idea: Can we remove the constraint, by solving directly in the DAG space?
Reformulate the DAG space: IV ¢ R™*™, pe L*(V)=R™

{GwoReLU (grad(p)) } = {DAGs}.

A new continuous optimization without constraint:

(W*,p*) = argmin F(W o ReLU(grad(p)), X)
WeRme,W:_WT,peRm
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Instead of solving for A, we solve for W and p, then obtain /ﬁOWGVGF, like NOTEAR%
an optimal DAG via: / this optimization problem
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. . . iS non-convex, even for
A" = W* o ReLU(grad(p*)) \ linear SEM /

~__
— _—



An Efficient Projection Algorithm

Idea: Can we provide initial guesses by projecting any cyclic graph to the DAG space?
How to solve the non-convex optimization problem

(W*,p*) = argmin F(W o ReLU(grad(p)), X)
WeRm*xm W=—WT pecR™

ﬁ heorem 3 (Projection Method): \ VO N
- Let A € R™*™ be the weighted adjacency matrix of a DAG, C(A) [ ‘
denotes the connectivity matrix of A, then /For any (cyclic) A, /
(1 | jectitto
p=—Aldiv (— C(A) — Cc(A)T ) : we can projec
’ (=D } the DAG space.\\ J
preserves the topological order in A. Moreover, taking BN >
0, - Hpl)=p()or AGH) =AG)=0;
Wl = 3 502 i AG,5) # 0 and A(j,6) = 0; O A
ol if A(i, ) = 0 and A(j,4) # 0,

. we have A = W o ReLU(grad(p))




DAG-NoCurl

Overall recipe for DAG-NoCurl

Prediction phase: Solve for an initial prediction AP € R™*™ via:
AP"¢ = argmin F(A, X) + A\h(A)
A

Projection phase: Based on AP"¢ | obtain an approximate solution of p with the projection

method: 1
p= —Agdiv (§(C(Ap7"6) — C(Apm)T)) :

and solve for Wvia: W = argmin F(W o ReLU(grad(p)), X).
wes

Final approximation: A = W o ReLU(grad(p)) and apply thresholding to remove false
discoveries.



DAG-NoCurl

Results: linear SEM
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Accuracy: NoCurl achieves a similar accuracy, and sometimes beats NOTEARS,
especially on dense and large graphs




DAG-NoCurl

Results: linear SEM
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Efficiency: NoCurl requires a similar runtime as FGS and MMPC, which is
faster than NOTEARS by one or two orders of magnitude.
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