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We aim to uncover the veil of the GNN
by interpreting its predictions.



FProblem

» Given: a pre-trained GNN for classification, an instance
(an input graph) from the data distribution.

» Objective: to obtain an explanation mechanism that can
identify the most relevant part of the input (a compact
subgraph), causing the prediction of the GNN.
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Related work

» GNNEXxplainer (NeurlPS 2019): explains each instance
separately.

» PGEXxplainer (NeurlPS 2020): trains a multilayer-
oerceptron (MLP) to provide explanations.




Our solution

» \WWe propose to train a graph generator as an explainer —
the input Is a graph, and the output Iis the explanatory
subgraph structure.

» Once trained, it can be used to explain any input graph
with little time.

» Our explainer is model-agnostic — does not need to
know the internal structure of the target GNN.



What Is the supervision signal for
training our explanation model”



Our solution (Cont.)

» We propose a graph distillation mechanism that can extract
the most relevant part of the graph leading to the predictions
of the target GNN.

» We quantify the edge importance with the notion of
Granger causality — In the graph domain, if the absence
of an edge decreases the ability to predict Y, then there Is
a causal relationship between this edge and its
corresponding prediction.

» With the importance quantification, we can extract the
top-K most important edges as the explanatory subgraph.



Our solution (Cont.)

» The causal contribution of the edge € IS defined as the
decrease in model error, formulated as:

A(S,ej — 5GC\{ej} — 5GC

» Incorporate graph rules: such connectivity checking, etc.
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Our framework Gem



EXperiments

» Baselines: GNNExplainer (NeurlPS 2019) and PGEXxplainer
(NeurlPS 2020)

» Benchmarking datasets:
» Graph classification tasks: MUTAG and NCI

» Node classification tasks: BA-shapes and Tree-cycles
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EXplanation accuracy
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Table 1. Explanation Accuracy on Synthetic Datasets (%).

BA-SHAPES TREE-CYCLES
K 5 6 7 8 9|16 7 8 9 10
Gem 93.4 97.1 97.1 97.1 99.3|86.1 87.5 92.5 93.9 95.4
GNNExplainer||82.4 88.2 91.2 91.2 94.1{14.3 46.8 74.6 91.4 96.1
PGExplainer ||71.9 90.7 92.0 93.3 94.1|94.4 80.6 77.0 82.4 89.4

Table 2. Explanation Accuracy on Real-World Datasets (%).

MUTAG NCI1
K 15 20 25 30|15 20 25 30
Gem-0 64.0 78.1 810 8.0 — - — -
GNNExplainer-0(/60.0 67.6 689 758 — — — —
PGExplainer-0 (|22.5 38.5 57.6 723 — — — —
Gem 66.3 78.0 82.1 83.4(56.9 65.3 68.9 72.8
GNNExplainer [|67.1 74.9 75.8 80.9|39.3 61.8 69.6 72.0
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EXplanation time

Table 3. Inference Time per Instance (ms).

DATASETS BA-SHAPES|TREE-CYCLESMUTAG|NCI1
GNNEXPLAINER| 265.2 204.5 257.6 |259.8
PGEXPLAINER 6.7 0.5 5.5 —

GEM 0.5 0.5 0.05 |0.02
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https://githulb.com/wanyu-lin/ICML2021-Gem
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