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Logistic linear bandits
• Given an arm set 𝒳 ⊂ ℝ!

• For 𝑡 = 1…𝑇
• A random user 𝑢 arrives.
• The system chooses an arm 𝑥" ∈ 𝒳 and shows it.
• The user 𝑢 provides a reward 𝑦" ∈ {0,1} on the item 𝑥" .

Two different settings
• (Reward maximization) maximize cumulative reward:   ∑"#$% 𝑦"
• (Pure exploration)          identify the best arm 𝑥∗ = argmax

'∈𝒳
𝜇 𝑥*𝜃∗
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[Assumption] 𝑦! ~Bernoulli 𝜇 𝑥!"𝜃∗
1
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𝜇 𝑧 = 1/(1 + exp −𝑧 )

unknown parameter

Example: online news recommendation



Contribution 1: Prediction error bound

A finite-time bound that is asymptotically optimal for the first time (order-wise).
• Improved upon the prior art Li et al. (2017)
• Valid once we have 𝑑+ samples (prior art: 𝑑,)
• No explicit dependence on the infamous 𝜅-$ ≈ exp( 𝜃∗ +)
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Fix 𝑥 ∈ ℝ!. With probability at least 1 − 𝛿,

max
"#$..&

𝑥" '$ (∗ %&
) ≲

1
𝑑 ⟹ 𝑥* -𝜃& − 𝑥*𝜃∗ ≤ 2.4 𝑥*𝐻& 𝜃∗ ,$𝑥 ⋅ log 1/𝛿

𝐻! 𝜃∗ ≔0
'()

!
�̇� 𝑥'"𝜃∗ 𝑥'𝑥'"MLE

predictedwarmup condition true
variance



• Our sample complexity bound

• Kazerouni et al. (2019):  !.
!"|𝒳|
0#$%
" log $
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• In fact, our bound works for a more general setting called transductive pure exploration.
• Optimality

• [Warmup] (thm) It is impossible to avoid the dependence on 𝜅-$ in the worst case.
• [Main term] Not exactly tight, but quite close (Taylor approximation)

Contribution 2: Pure exploration
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Δ!"# ≔ min
$∈𝒳∖{$∗}

𝑥∗ − 𝑥 +𝜃∗

≲ 𝑑)𝜅,$ +
𝑑𝜅,$

Δ567) log
𝒳
𝛿

𝑑+𝜅-$ + min
2∈0𝒳

max
'∈𝒳∖ '∗

𝑥∗ − 𝑥 4(2,7∗)!(
+

𝑥∗ − 𝑥 *𝜃∗ + log
𝒳
𝛿

Δ𝒳 ≔ a probability distribution over 𝒳

the main term (instance-dependent)warmup



Contribution 3: 𝐾-armed contextual bandits
• Arm set 𝒳" is changing with 𝑡;    𝐾 ≔ max

"#$..%
|𝒳"|

• Stochastic context assumption (following Li et al. (2017))

Expected regret bound

• Ours:                                          𝑂( 𝑑𝑇 log𝐾 + 𝑑,𝜅-$ + 𝑑:)

• Li et al. (2017):                         𝑂(𝜅-$ 𝑑𝑇 log𝐾 + 𝑑,𝜅-; + 𝑑:)
• Strictly worse than ours.

• Faury et al. (2020):                  𝑂 𝑑 𝑇 + 𝑑+𝜅-$

• Worse than ours when both 𝑑 and 𝑇 are large
• Better than ours when 𝐾 = Ω(𝑒!)
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: key difference

* the first two bounds are based on the best-case context distribution


