Improved Confidence Bounds for the Linear Logistic Model and Applications to Bandits

Blake Mason UW-Madison

Houssam Nassif Amazon

Logistic linear bandits

- Given an arm set $\mathcal{X} \subset \mathbb{R}^{d}$
- For $t=1$... T
- A random user u arrives.
- The system chooses an $\operatorname{arm} x_{t} \in \mathcal{X}$ and shows it.
- The user u provides a reward $y_{t} \in\{0,1\}$ on the item x_{t}.

$$
\mu(z)=1 /(1+\exp (-z))
$$

[Assumption] $y_{t} \sim \operatorname{Bernoulli(\mu (x_{t}^{\top }\theta ^{*}))^{1\uparrow }}$

Example: online news recommendation Ifms

Two different settings

- (Reward maximization) maximize cumulative reward: $\sum_{t=1}^{T} y_{t}$
- (Pure exploration) identify the best arm $x^{*}=\arg \max _{x \in \mathcal{X}} \mu\left(x^{\top} \theta^{*}\right)$

Contribution 1: Prediction error bound

A finite-time bound that is asymptotically optimal for the first time (order-wise).

- Improved upon the prior art Li et al. (2017)
- Valid once we have d^{2} samples (prior art: d^{3})
- No explicit dependence on the infamous $\kappa^{-1} \approx \exp \left(\left\|\theta^{*}\right\|_{2}\right)$

Contribution 2: Pure exploration

- Our sample complexity bound

- Kazerouni et al. (2019): $\frac{d \kappa^{-2}|X|}{\Delta_{\min }^{2}} \log \left(\frac{1}{\delta}\right)$
- In fact, our bound works for a more general setting called transductive pure exploration.
- Optimality
- [Warmup] (thm) It is impossible to avoid the dependence on κ^{-1} in the worst case.
- [Main term] Not exactly tight, but quite close (Taylor approximation)

Contribution 3: K-armed contextual bandits

- Arm set X_{t} is changing with $t ; \quad K:=\max _{t=1 . . T}\left|\mathcal{X}_{t}\right|$
- Stochastic context assumption (following Li et al. (2017))

Expected regret bound

- Ours:

$$
\begin{aligned}
& O\left(\sqrt{d T \log K}+d^{3} \kappa^{-1}+d^{5}\right) \\
& O\left(\kappa^{-1} \sqrt{d T \log K}+d^{3} \kappa^{-4}+d^{5}\right)
\end{aligned}
$$

- Li et al. (2017):
- Strictly worse than ours.
- Faury et al. (2020): $\quad O\left(d \sqrt{T}+d^{2} \kappa^{-1}\right)$
- Worse than ours when both d and T are large
- Better than ours when $K=\Omega\left(e^{d}\right)$

