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Logistic linear bandits

e Given an arm set X’ ¢ R4

e Fort =1..T
* Arandom user u arrives.
* The system chooses an arm x; € X and shows it.
* The user u provides a reward y; € {0,1} on the item x; .

Example: online news recommendation
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* (Reward maximization) maximize cumulative reward: '/_; v,

e (Pure exploration) identify the best arm x* = arg max u(x'6%)
X



Contribution 1: Prediction error bound

Fix x € R%. With probability at least 1 — &, H,(0%) = zt (T 0T
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A finite-time bound that is asymptotically optimal for the first time (order-wise).
e Improved upon the prior art Li et al. (2017)

* Valid once we have d? samples (prior art: d?)

* No explicit dependence on the infamous k™1 ~ exp(]|6*]|,)



Contribution 2: Pure exploration

* Our sample complexity bound

Ay = a probability distribution over X
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» Kazerouni et al. (2019): dKZ |xllog (1)
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* In fact, our bound works for a more general setting called transductive pure exploration.
e Optimality
« [Warmup] (thm) It is impossible to avoid the dependence on k™1 in the worst case.
* [Main term] Not exactly tight, but quite close (Taylor approximation)



Contribution 3: K-armed contextual bandits

* Arm set X; is changing witht; K := max | X¢ |

 Stochastic context assumption (following Li et al. (2017))

Expected regret bound

* Ours: 0(/dT logK + d3k™1 + d°)

 Lietal. (2017): O(K_l\/dT logK + 613|Ic_4 + d®) : key difference
 Strictly worse than ours.

-+ Faury et al. (2020): o(aT + d2c?)

e Worse than ours when both d and T are large
e Better than ours when K = Q(e%)

* the first two bounds are based on the best-case context distribution 5



