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Accelerating Material Science Designs

Material scientists often faced challenging optimization problems

Multi-objective black-box problem (minimize
different reflection angles)

Practical metric constraints exist on acceptable
values for each objective

Limited and expensive budget (each fabrication
could take 5 days to execute)

Physical precision limitations caused by the
tools used in the experimentation




Balancing competing objectives
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Practical metric constraints
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Limited budget
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Intelligent multimetric optimization with constraints
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Intelligent multimetric optimization with constraints
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Dealing with precision limitations
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Discrepancy between development and production
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The “real” metrics are unknown a priori
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- Precision limitations
- Covariate shift
- Model mismatching
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Multimetric formulations

Multimetric optimization Constraint Active Search Level set estimation
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Constraint Active Search

An alternative to the Pareto Frontier

Constraint Active Search

Instead of performing multiobjective optimization,
we solve a search problem:

Region of
satisfactory points
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We propose soliciting desired minimum performance
constraints to define a satisfactory region:
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Constraint Active Search

—xpected Coverage Improvement

Constraint Active Search

Select points that cover the satisfactory region given a

resolution parameter r

New candidate
Point

Our goal is to select points to cover the satisfactory region S
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We use Bayesian decision theory to derive an one-step optimal §§;|eev:t’:§'yomts
policy that covers the satisfactory region P
ECI estimates the additional coverage increase given by the
new point, considering the uncertainty around §
Our policy selects the point with the highest expected increase !
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Experiments

-valuate multiobjective problems using multiple criteria

Fill distance Hypervolume

Radius of the largest empty ball we Volume of the region bounded by the
could place on the satisfactory region Pareto points and the thresholds
FILL(X,S) = sup min d(x;,x)
xeS X;€X
Number of positives Coverage recall
Number of satisfactory points selected Induced volume of selected points

inside the satisfactory region

Total of 11 experiments, 20 trials each

Several design and simulation domains: mechanical design, additive manufacturing,
medical monitoring, and plasma physics
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Our method ECI excels at finding diverse configurations inside the satisfactory region

Bayesian optimization consistently improves the hypervolume but is not as effective at diverse sampling

Similarly, active search, which greedily maximizes the number of positive points, performs best at this metric but the samples are not diverse



Experiments

Additive manufacturing example
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Please check our paper for more details
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Key contributions

« We introduce a paradigm for multi-objective black-box problems, which we call constraint
active search (CAS). CAS can be seen as a generalization of Experimental Design and
Bayesian Optimization

« We develop an algorithm called expected coverage improvement (ECI). ECI focus on
searching diverse samples that satisfy the objective constraints. We also provide
theoretical analysis on the sample diversity of ECI

« Theoretical properties of this strategy include a constant approximation ratio to the optimal
sample diversity (fill distance)

« We compare ECI to various baselines on a suite of synthetic multiobjective design
benchmarks as well as real-world multiobjective design and simulation applications in
materials science, medical monitoring, and plasma physics
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