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Decentralized Optimization Problem

1. We assume that         is Lipschitz smooth.

(centralized problem)

consensus constraint

Here                     is the Stiefel manifold.  

  2.   The network is associated with a doubly stochastic matrix W.



Motivations
1. Privacy

The datasets are collected, stored in distributed manner.  To protect users’ privacy, the central 
server is not allowed. 

The deterministic decentralized method is treated as a compromise.  Sparser/larger network, 
lower convergence rate. 

2.  Acceleration in stochastic algorithms

        The decentralized setting is more communication-efficient

- For decentralized stochastic gradient descent(SGD), each node takes the same computation 
complexity as that of the centralized SGD (Lian et al., 2017)

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized algorithms outperform 
centralized algorithms? a case study for decentralized parallel stochastic gradient descent. In Advances in Neural 
Information Processing Systems, pages 5330–5340, 2017. 



2.     The manifold is nonlinear space… 

 We need to use Riemannian optimization tools

Euclidean consensus                       is not feasible.

Challenges
1. The Stiefel manifold is a nonconvex set in Euclidean space. Previous results do not apply…

Nedic et al., 2010; Shi et al., 2015; Di Lorenzo & Scutari, 2016; Qu & Li, 2017; Nedic et al., 2017; Lian et al., 2017;...

Shixiang Chen, Alfredo Garcia, Mingyi Hong, and Shahin Shahrampour. On the local linear rate of consensus on the stiefel 
manifold. arXiv preprint arXiv:2101.09346, 2021.

Sphere

To achieve local linear consensus on Stiefel manifold, variables should stay in a local region, denoted by      .  (Chen, et al. 2021)

For example, on the sphere,         is the hemisphere.



Contributions

2.   We propose the first Decentralized Riemannian gradient tracking algorithm (DRGTA).

(i) DRGTA can use constant stepsize

(ii) The convergence rate is 

1. We propose a Decentralized Riemannian stochastic gradient descent 
algorithm(DRSGD). We show 

(i)  DRSGD can achieve linear speedup w.r.t the nodes number n.  The convergence rate to 
stationary point is                  for sufficiently large k.

(ii) DRSGD is faster than the corresponding centralized Riemannian SGD.



DRSGD:  stepsize                          ,   an integer  

At each node i :

1. Choose          s.t.

2.

Algorithm 1: Decentralized Riemannian Stochastic gradient descent(DRSGD)

Multi-step Consensus; also preserve                        
(Chen, et al. 2021)
 

         : retraction mapping helps preserve feasibility

          : orthogonal projection onto the tangent space 

minimize the function



Assumption:

1.        and        are independent for any i, j
2. unbiased and bounded variance:

3. uniform bound:                     for all i, k.           

Convergence:

If K is sufficiently large,                              ,                    ,             one has 

the linear speedup w.r.t n



Algorithm 2: Decentralized Riemannian Gradient Tracking (DRGTA)

Key idea of DRGTA: auxiliary sequence               estimates the Riemannian gradient 

At each node i :

        1.

        2.

        3.

Extension of the DIGing algorithm (Qu & Li, 2017; Nedic et al., 2017)

Multi-step Consensus

projection onto tangent space, 
better estimation

Riemannian gradient tracking step



If      ,               ,                       then               . And the following holds

                            

Convergence of DRGTA

consensus error

stationarity



Numerical results: PCA on MNIST dataset

DRSGD  v.s  Centralized Riemannain stochastic gradient descent (CRSGD)
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Convergence of DRGTA
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