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Hello everyone, thanks for you coming to this talk, this is Zhibin. 
In this video, I’ll present our work ‘Sawtooth Factorial Topic Embeddings Guided Gamma Belief Network’. 
This is a joint work with Dongsheng, Professor Chen, chaojie, wenchao, Yewen, jie and Professor Zhou. 



Motivation

B Document Representation B Hierarchical Topic Models

» Bag-of-words (Bow) » Gamma belief network (GBN)
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¥ Simple and powerful v" The latent variables at each layer are dependent

% Extremely sparse matrices > The topics at each layer are independent
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Our reasearch starts from a central task in text analysis, specifically how to effectively represent the documents to capture their underlying semantic structures.

As shown in the left, we represent each document as a sequence of sentences, each sentence as a sequence of word tokens, and each word token as a one-hit vector, where the vector dimension is the size of the vocabulary. This provides a lossless representation of a corpus that not only preserves all textual information, but also respects the natural internal structure of each document. 
However, this representation results in a collection of extremely large and sparse matrices, as well as a three dimensional   So  it is very challenging to directly model this lossless representation under the limitation of the the memory and computation. 

Thus existing methods often resort to simplified lossy representations that either completely ignore word order like bag-of-word representation or embed the words into a low-dimensional feature space like word-embedding representation.

Howerver in our work, we try to directly contruct a hierarchical probabilistic model  on documents, each of which is repersented as a sequence of sentences 
of one-hot vectors and the following is our contribution
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Figure 1. (a) Gamma belief network and (b) overview of the pro-
posed SawETM and its corresponding hierarchical upward and
downward encoder networks
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v" Preserve latent variables dependency
v" Capture topics dependency
Take advantages of the sparsity

v" Project topics in a shared embedding space
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First, we propose a Bayesian generative model called Bidirectional Convolutional Poisson Gamma Dynamical Systems that can directly model one-hot vectors.

Through introducing convolution into oMore specifically,  we link these sequential binary vectors to sequential count vectors via the Bernoulli-Poisson link, and then factorize the latent count matrix into the summation of K equal-sized latent count matrices under the Poisson likelihood, where each component is obtained by convolving each kernel Dk with its corresponding gamma distributed feature representation wjk.
ur model, each kernel Dk  can capture the sequential dependence between the columns from the text corpus, such as n-gram phrases. The transition matrices can capture cross-sentence temporal dependences.

We propose a novel sentence-level probabilistic pooling using the relationship between the gamma and Dirichlet distributions to handle sentences of different lengths, thus to couple the convolutional components of CPFA with dynamic components of PGDS. Distinct from traditional deterministic feedforward or backforward pooling operations, which cut off the backward message passing, the probabilistic pooling layers in our model can be trained jointly with the whole network and also transfer the message from different time-steps.


Distinct from other probabilistic convolutional or dynamic models dealing with full dense matrices, the proposed bi-conv-PGDS  can directly model sparse matrix and also take advantages of the sparsity to speed up training phase benefit from  the poisson-gamma distribution.  

Further the proposed bi-conv-PGDS can be trained with a parallel forward-backward gibbs sampler on GPU.



Our contribution
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Experiment

B Per-heldout-word Perplexity & Topic Quality
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Figure 2. (a)-(c): Comparison of per-heldout-word perplexity (the lower the better). (d)-(f): Comparison of topic quality (the higher the
better).



Experiment

B  Document Clustering

Table 1. Results of AC and NMI for document clustering task.

Model | Layer | 20News ‘ RS
| | AC | NMI | AC | NMI

LDA 1 46.52 | 45.15 | 51.41 | 40.47
AVITM 1 4831 | 4633 | 52.43 | 41.20
ETM 1 49.79 | 4840 | 55.34 | 41.28
PGBN 1 46.62 | 4543 | 51.67 | 40.76
PGBN 5 48.33 | 46.51 | 54.21 | 41.21
WHALI 1 4943 | 46.56 | 57.86 | 42.31
WHAI 5 4951 | 4698 | 60.45 | 43.98
DNTM 1 49.17 | 4632 | 57.58 | 42.12
DNTM 5 49.25 | 46.79 | 59.93 | 43.90
DETM 1 50.24 | 48.69 | 61.21 | 43.45
DETM 5 50.33 | 48.87 | 61.86 | 44.12
SawETM 5 51.25 | 50.77 | 63.82 | 45.90
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B Qualitative Analysis: Visualization of Embedding Space

» T-SNE visualization of word embedding and topic embedding
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(a) Word Embeddings (b) Topic Embedding
Figure 3. t-SNE visualisation of (a) word embeddings, which we choose the top ten words for each topic at layer one and (b) topic

embeddings, which we choose the top two sub topics for each topic at layer two. (Note that the Topic: ¢ _j denotes the ;™ topic at ¢
layer.)
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Qualitative Analysis : Hierarchical Structure of Topic Model
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Figure 4. An example of hierarchical topics learned from PG-19 by a 15-layer SawETM, We only show example topics at the top two

layers and bottom two layers.
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THANK YOU!

Email address: xd_ zhibin@163.com

Code available: https://github.com/BoChenGroup/SawETM
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