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Structure
• Part 1:  

Representation Learning in RL (Aravind): 
How can you use Self(Un)-supervised Learning to improve RL 

• Part 2:  
Reward-Free RL (Pieter): 
How can you train a completely unsupervised  
(or un-reinforced) agent
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Objective:  
Introduce some of the recent UL/SSL methods and some of their RL applications to folks doing RL. 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“If intelligence is a cake,  
bulk of the cake is un(self-)supervised learning,  
the icing on the cake is supervised learning, and, 
the cherry on the cake is reinforcement learning.”

— Yann LeCun

Definitions:

1. Unsupervised Learning: Learn from unannotated data

2. Supervised Learning: Learn from annotations (human labels)

3. Reinforcement Learning: Learn from reward signals

LeCake
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Forms of Learning

LeCake

Reinforcement Learning Intrinsic Motivation 
(Exploration)

Supervised Learning Self-(un)supervised 
Learning

With teacher Without teacher

Active 

Passive 

Table from Alex Graves

Examples: Count-Based Exploration (DeepMind, Bellemare),  
Curiosity (Pathak, Efros), Random Network Distillation (OpenAI), Go-Explore (Uber AI)



Forms of Learning

LeCake

Reinforcement Learning Intrinsic Motivation 
(Exploration)

Supervised Learning Self-(un)supervised 
Learning

With teacher Without teacher

Active 

Passive 

Table from Alex Graves

Learning is purely based on predicting the output from an input using labeled (annotated) data



Forms of Learning

LeCake

Reinforcement Learning Intrinsic Motivation 
(Exploration)

Supervised Learning Self-(un)supervised 
Learning

With teacher Without teacher

Active 

Passive 

Table from Alex Graves

Examples: AlexNet, VGG, ResNet, Neural Image Captioning, seq2seq (Transformers), DeepSpeech, WaveNet, 
AlphaFold, DALL-E, …… 



Forms of Learning

LeCake

Reinforcement Learning Intrinsic Motivation 
(Exploration)

Supervised Learning Self-(un)supervised 
Learning

With teacher Without teacher

Active 

Passive 

Table from Alex Graves

Learn representations, or world models, or generative models, from unlabeled (un-annotated or rewarded) data.



Forms of Learning

LeCake

Reinforcement Learning Intrinsic Motivation 
(Exploration)

Supervised Learning Self-(un)supervised 
Learning

With teacher Without teacher

Active 

Passive 

Table from Alex Graves

Examples: PixelCNN, GANs, VAEs, GPT-1,2,3; BERT, T5, Electra, iGPT, Contrastive Predictive Coding (CPC),  
Momentum Contrast (MoCo), AMDIM, CMC, SimCLR, BYOL, SimSiam, DINO, Barlow Twins, ….



“If intelligence is a cake,  
bulk of the cake is un(self-)supervised learning,  
the icing on the cake is supervised learning, and, 
the cherry on the cake is reinforcement learning.”

— Yann LeCun

LeCake

LeCake

Bits Argument:

1. Unsupervised Learning: Predict missing from given (millions of bits)

2. Supervised Learning: Predict human-annotations (thousands of bits)

3. Reinforcement Learning: Predict scalar rewards (fewer bits)
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LeCake

1. Label creation, annotation and maintenance is time-consuming and 
a challenging discipline in itself. 

2. Some domains require significant expertise in annotation (medicine, 
law, ethics, science, biology, etc.)


3. Reward annotation is even trickier - sparse or dense, what’s the right 
UI for scalable annotation of rewards by humans, should you 
use a continuous-valued reward or categorical (good/bad/neural), etc.


4. Collecting human demos for behavior cloning is challenging at scale 

5. Behavior cloning for real world problems prone to distribution  
mismatch and compounding errors without sufficient data 

6. Good (useful) behavioral data even without annotations is 
quite challenging to collect. 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Philosophical arguments in favor of unsupervised learning 

LeCake

1. Inspired by how human infants learn


2. Feels more human-like 

3. Build mental models of the world (Kenneth Craik) - “mind  
is a predictive modelling engine”, “organism carries a  
‘small-scale model’ of external reality and of its own possible actions  
within its head” 

4. Learn skills, not tasks (Satinder Singh) 

5. Build a general-purpose understanding of the world (representations,  
world models, common sense, etc etc) to be able to generalize well 
to new scenarios and learn fast (transfer)
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1. Consider ImageNet (1.28M images) with 1000 categories, 256x256.


2. Supervised: log2(1000) *1.28M ~ 12.8 Mbits


3. Unsupervised: 256x256x3x8 ~ 2000 Gbits, 150000x more.


4. Flaw in the argument: Not all bits are equal, a 8-bit color-channel 
information conveys much less than a human-language aligned 
categorical classification bit.


5. Somehow, intrinsically capture the bits that matter  
for downstream tasks and rely less on human-provided bits


6. Use self-supervised learning to improve the label and reward  
efficiency of supervised and reinforcement learning systems
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Forms of Unsupervised Learning

Generative Non-Generative (Contrastive-like)

Density Modeling Masked Auto-Encoding Siamese Networks Contrastive Prediction
(BERT, Electra) (SimCLR, MoCo, AMDIM, 

BYOL, SimSiam, DINO,  
Barlow Twins …)

(CPC)(PixelCNN, GPT-x, 
Bigan (implicit))
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Learn world models;  
Dyna (fake rollouts), 

Model-Based RL
Use as an auxiliary task to speed up (sample-efficiency) RL

Beyond the scope of this tutorial;  
but will highlight some representative work, 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Data-Efficient Image Recognition using Contrastive Predictive Coding (Henaff et al ICML 2020)
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… we lived our lives under the constantly changing sky without sparing it a glance or thought. 
And why indeed should we? If the various formations had some meaning, if, for example, there had 

been some concealed signs and messages for us which it was important to decode correctly, unceasing  
attention to what was happening would have been inescapable  

- Karl Ove Knausgaard, A Death in the Family (From Alex Graves’ tutorial)
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AutoEncoder

Slide from Alex Graves

A lossy (bottleneck) representation of the input - but packs as much information as possible
Adding some structure to the latent (bottleneck) can help add more semantic meaning
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Variational AutoEncoder (VAE)

Slide from Alex Graves

Make sure there’s an additional penalty for the latents (posterior) to match a prior

reconstruction pathway goes through a cost for how much information it can pack in; also has to match the prior  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Spatial AutoEncoder

Deep Spatial Autoencoders for Visuomotor Learning (Finn et al 2015)



AutoEncoders can ignore relevant features for a task

Ian Goodfellow (Chapter 13, Deep Learning Textbook, Figure from Chelsea Finn)

Reconstruction error isn’t significantly altered by presence or absence of the ping-pong ball.
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AutoEncoders can ignore relevant features for a task

OpenAI DALL-E Reconstructions (Ramesh et al 2021)

If the task is to accurately identify the pastry place, some of the details are blurry. However, future incarnations could potentially address these 
issues. It all depends on how much you downsample (8x in this case).



Beta-Variational AutoEncoder (beta-VAE)

Slide from Alex Graves

Increase the KL cost on the latent. Leads to more disentanglement

beta-VAE - Higgins et al 2016



Beta-Variational AutoEncoder (beta-VAE)

beta-VAE - Higgins et al 2016



Beta-Variational AutoEncoder (beta-VAE)

SCAN: Learning Abstract Hierarchical Compositional Visual Concepts (DeepMind Blog)
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Jaderberg et al 2016Reinforcement Learning with Unsupervised Auxiliary Tasks
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Jaderberg et al 2016Reinforcement Learning with Unsupervised Auxiliary Tasks



DARLA: Improving Zero-Shot Transfer in RL

Higgins et al 2017
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World Models - Ha & Schmidhuber 2018
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Dreamer (Hafner et al 2019)

Dream to Control: Learning behaviors by latent imagination - Hafner et al 2019
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Siamese Networks: Invariance to (augmented) views

Figure from Antonin Raffin, 
@araffin2

If you have some knowledge about the domain,  
encode it into the  latent space through the form  
of invariances. 
 
 
More often than not, this results in emergent  
representations that capture the most useful 
aspects of the high-dimensional inputs. 
 
Why? Because it ignores what you ask the encoder 
to be invariant to - and the better you can prescribe 
that, the more the model knows what not to focus on.



Siamese Networks: Invariance to (augmented) views

Signature Verification (Bromley, Guyon, LeCun, et al, 93) Learning a similarity metric discriminatively,  
Chopra, Hadsell, LeCun, 2005



Siamese Networks: Invariance to (augmented) views

Signature Verification (Bromley, Guyon, LeCun, et al, 93) FaceNet, Schroff et al 2015
Invariance to pose, lighting, etc - model focuses on encoding facial features



One way to train Siamese Networks is Contrastive Learning
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Contrastive Learning: InfoNCE Loss

Slide adapted from Aaron van den oord

1. Representation Learning with Contrastive Predictive Coding (van den Oord et al 2018) 
2. Improved Deep Metric Learning with Multi-Class N-Pairs Loss - (Sohn et al 2016) 
3. Deep InfoMax, AMDIM (Hjelm, Bachman, et al 2019)

1. Maximize mutual information between the views x and y. 

2. Convert it to a classification problem, optimized with a  
stable cross-entropy loss. 

3. Representations capture things common to x and y. 

4. By augmenting x and y in several ways (stuff you don’t  
want to capture), you only capture the relevant left-over 
common things.
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1. Plenty of choices for what x and y can be. 

2. x and y could be two augmented views of the same image. 

3. x could be the past frame (aug), y could be the future frame (aug) 

4. x could be past frame (aug) + action, y could be future (aug)… 

5. Whatever it is, you are optimizing for MI between x and y (lower bound)
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Contrastive Learning: SimCLR

A Simple Framework for Contrastive Learning of Visual Representations, Chen et al 2020



Contrastive Learning: Contrastive Predictive Coding (CPC)

1. Representation Learning using Contrastive Predictive Coding, van den Oord et al 2018 
2. Data-Efficient Image Recognition using Contrastive Predictive Coding, Henaff et al 2020



SimCLR: Importance of Augs

A Simple Framework for Contrastive Learning of Visual Representations, Chen et al 2020



SimCLR: Importance of Negatives

A Simple Framework for Contrastive Learning of Visual Representations, Chen et al 2020



Challenges in Contrastive Learning
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High MI between anchor and positive

Slide adapted from Aaron van den OordSlide adapted from Aaron van den OordPlease do check out Aaron Van den Oord’s talks on this topic



Contrastive Learning is just one way to learn Siamese-style Networks

There are approaches that work without negatives (BYOL, SimSiam, DINO, Barlow Twins)



Cluster Swapping using Augmentations (SwaV)

1. Unsupervised Learning of Visual Features by Contrasting Cluster Assignments (Caron et al 2020)



BYOL, SimSiam, DINO

1. Bootstrap Your Own Latent (Grill et al 2020) 
2. Exploring Simple Siamese Representation Learning - (Chen & He 2021) 
3. Emerging properties in self-supervised vision transformers (Caron et al 2021)



Yann LeCun’s summary of all Siamese approaches



Quick background

1. Autoencoder 

2. Variational Autoencoder 

3. Contrastive Learning 

4. Siamese Networks 

5. Data-Augmentations  

Contrastive-like UL



How have people applied Contrastive Learning, Siamese Nets, Data 
Augmentations, etc in Reinforcement Learning?



Capture useful aspects of high dimensional sensory stream
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Data-Efficiency in Reinforcement Learning

1. Code becomes a lot simpler. Less feature engineering.


2. Calibration, sim2real etc become a lot simpler.


3. Take advantage of all the DL scale infra that’s been 
built for vision and NLP, for robotics. 
 


4. Sensor costs. 

5. MLPs are not as parameter and FLOP efficient as 
transformers and ConvNets.




Data-Efficiency in Reinforcement Learning

60M training steps 60M training steps

[Tassa et al., 2018] Tassa, Y., Doron, Y., Muldal, A., Erez, 
T., Li, Y., Casas, D.D.L., Budden, D., Abdolmaleki, A., 
Merel, J., Lefrancq, A. and Lillicrap, T DeepMind Control 
Suite, arxiv:1801.00690, 2018.
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Can contrastive learning fix this?



Data-Efficiency in Reinforcement Learning

Building machines that can learn and think like people, Lake et al 2016



Contrastive Unsupervised Representations for Reinforcement Learning (Srinivas, Laskin, Abbeel; ICML 2020)

Contrastive Learning + Reinforcement Learning



Contrastive Unsupervised Representations for Reinforcement Learning (Srinivas, Laskin, Abbeel; ICML 2020)

Contrastive Learning + Reinforcement Learning



1. Stacked Frames instead of single image

2. Temporally Consistent Spatial Random Crop

3. Common practice in Video Recognition

Contrastive Learning + Reinforcement Learning



GRAY: SAC State
RED: CURL

Contrastive Learning + Reinforcement Learning



Contrastive Learning + Reinforcement Learning



Contrastive Learning + Reinforcement Learning

Planet, Dreamer, SLAC, SAC+AE are strong but relatively complex baselines.
All of them reconstruct pixels (either autoencoder or future frames). Contrastive just learns what’s necessary and high-level.

CURL beats Planet, Dreamer, SLAC (model-based methods) despite being model-free and minimal.



Decoupled Representation Learning

The Le Cake (Figure from David Ha)

Just learn the encoder with contrastive, and do not backpropogate the RL loss to the encoder. 
Towards a Feature Layer Moment (promise, not yet happened) for RL from pixels.

On 4/6 tasks, it is almost as good. On remaining 2, it is not (ex Cheetah Run, Walk Walk).



Failure Cases

Not good on tasks with high frequency dynamics, for example, running, swimming, acrobot, etc.



Failure Cases

The representation learning struggles on these harder environments.



Self-Predictive Representations for RL



Temporal information helps. Predict the future from past. (CPC-like, but executed in BYOL fashion)

Self-Predictive Representations for RL



Self-Predictive Representations for RL

Data-Efficient Reinforcement Learning with Self-Predictive Representations, Schwarzer & Anand 2020

On an average, contrastive learning (or like methods) help get to 70% data-efficiency as a human.



Reinforcement Learning with Augmented Data

Reinforcement Learning with Augmented Data, Laskin, Lee, Stooke, Pinto, Abbeel, Srinivas, NeurIPS 2020
Image Augmentation is all you need; Kostrikov, Yarats, Fergus; ICLR 2021



Reinforcement Learning with Augmented Data

No surprises, random crops helps. And the network focuses on the right saliency regions.

Reinforcement Learning with Augmented Data, Laskin, Lee, Stooke, Pinto, Abbeel, Srinivas, NeurIPS 2020



Reinforcement Learning with Augmented Data

Reinforcement Learning with Augmented Data, Laskin, Lee, Stooke, Pinto, Abbeel, Srinivas, NeurIPS 2020



Reinforcement Learning with Augmented Data

Reinforcement Learning with Augmented Data, Laskin, Lee, Stooke, Pinto, Abbeel, Srinivas, NeurIPS 2020
Image Augmentation is all you need; Kostrikov, Yarats, Fergus; ICLR 2021



Reinforcement Learning with Augmented Data

Reinforcement Learning with Augmented Data, Laskin, Lee, Stooke, Pinto, Abbeel, Srinivas, NeurIPS 2020
Image Augmentation is all you need; Kostrikov, Yarats, Fergus; ICLR 2021



Reinforcement Learning with Augmented Data

Reinforcement Learning with Augmented Data, Laskin, Lee, Stooke, Pinto, Abbeel, Srinivas, NeurIPS 2020
Image Augmentation is all you need; Kostrikov, Yarats, Fergus; ICLR 2021



Reinforcement Learning with Augmented Data
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Reinforcement Learning with Augmented Data



Reinforcement Learning with Augmented Data



Reinforcement Learning with Augmented Data



Data Augmentation vs Auxiliary Losses

Data-Efficient Reinforcement Learning with Self-Predictive Representations, Schwarzer & Anand 2020



Interpretation of augmentations in auxiliary and direct form

• CURL = Un-annotated (can be done w/o rewards or tasks; 
flexible with respect to positive & anchors)

• RAD = Annotated (only for a specific reward or task)

• CURL can help you learn one general purpose encoder for 
many tasks in the decoupled setup.

• Lots of followup work combining both the ideas now.



Stooke et al, ICML 2021

Decoupling Representation and Reinforcement Learning



Proto-RL, Yarats et al 2021

SwaV + DrQ (Proto-RL) - Yarats



FERM: CURL + RAD for Robotics

Framework for Efficient Robot Manipulation - Zhan et al, 2020

Robot Learning from Pixels for Sparse Reward Tasks, within 30 minutes of real time training



Robot Learning from Pixels for Sparse Reward Tasks, within 30 minutes of real time training

Framework for Efficient Robot Manipulation - Zhan et al, 2020

FERM: CURL + RAD for Robotics



Time Contrastive Networks (TCN)

Time Contrastive Networks: Self-Supervised Learning from Video, Sermanet et al 2018



Time Contrastive Networks: Self-Supervised Learning from Video, Sermanet et al 2018

Time Contrastive Networks (TCN)



Representative Work (not exhaustive) 
1. UNREAL: Reinforcement Learning with Unsupervised Auxiliary Tasks (Jaderberg et al 2016)

2. DARLA: Improving Zero-Shot Transfer in Reinforcement Learning (Higgins et al 2017)

3. World Models (Ha & Schmidhuber, 2018)

4. Learning to summarize from human feedback (Stiennon et al 2020) 

 

5. CPC: Contrastive Predictive Coding (Van den Oord et al 2018)

6. CURL: Contrastive Unsupervised Representations for RL (Srinivas & Laskin et al 2020)

7. DrQ: Image Augmentation is all you need - (Kostrikov & Yarats et al 2020),  

RAD: Reinforcement Learning with Augmented Data (Laskin et al 2020)

8. SPR: Self-Predictive Representations (Schwarzer & Anand et al 2020)

9. Decoupling Representation Learning from Reinforcement Learning (Stooke et al 2021)

10. Reinforcement Learning with Prototypical Representations (Yarats et al 2021)

11. Pre-training representations for data-efficient RL (Schwarzer & Rajkumar et al 2021) 

 
 

12. Deep Spatial Autoencoders for Visuomotor Learning (Finn et al 2015)

13. TCN: Time Contrastive Networks (Sermanet et al 2018)

14. FERM: A Framework for Efficient Robotic Manipulation (Zhan et al 2020)


Generative UL

Contrastive-like UL

Robotics Applications



Representative Work (not exhaustive) 
1. UNREAL: Reinforcement Learning with Unsupervised Auxiliary Tasks (Jaderberg et al 2016)

2. DARLA: Improving Zero-Shot Transfer in Reinforcement Learning (Higgins et al 2017)

3. World Models (Ha & Schmidhuber, 2018)

4. Learning to summarize from human feedback (Stiennon et al 2020) 

 

5. CPC: Contrastive Predictive Coding (Van den Oord et al 2018)

6. CURL: Contrastive Unsupervised Representations for RL (Srinivas & Laskin et al 2020)

7. DrQ: Image Augmentation is all you need - (Kostrikov & Yarats et al 2020),  

RAD: Reinforcement Learning with Augmented Data (Laskin et al 2020)

8. SPR: Self-Predictive Representations (Schwarzer & Anand et al 2020) 
9. Decoupling Representation Learning from Reinforcement Learning (Stooke et al 2021)

10. Reinforcement Learning with Prototypical Representations (Yarats et al 2021)

11. Pre-training representations for data-efficient RL (Schwarzer & Rajkumar et al 2021) 

 
 

12. Deep Spatial Autoencoders for Visuomotor Learning (Finn et al 2015)

13. TCN: Time Contrastive Networks (Sermanet et al 2018)

14. FERM: A Framework for Efficient Robotic Manipulation (Zhan et al 2020)


Significant improvements



Research Ideas
1. So many opportunities for future research in this space 

2. Exploring objectives like DINO, Barlow Twins for RL - connections to Policy Distillation 

3. Applying these ideas to indoor navigation in Habitat 

4. Real-world results in robot manipulation 

5. Observational Imitation (Revisiting TCN with the modern tools) 

6. Learning world models in latent spaces discovered by Siamese Nets 

7. Larger networks pre-training 

8. Multi-task learning with shared unsupervised pre-trained backbones 

9. …….. 

10. ……..




Thanks! 
aravindsrinivas@gmail.com

mailto:aravindsrinivas@gmail.com


ICML 2021 Tutorial on 
Unsupervised Learning for RL:

Part II: Reward-Free RL
Pieter Abbeel & Aravind Srinivas

UC Berkeley

Thanks to Marc Bellemare, Yang Gao, Misha Laskin, Sergey Levine, Hao Liu, Vlad Mnih, Pierre-Yves 
Oudeyer, Deepak Pathak, Lerrel Pinto, Aravind Rajeswaran for valuable feedback and suggestions.



n Part I: Representation Learning in RL

n Part II: Reward-Free RL

Tutorial Overview

Pieter Abbeel -- UC Berkeley | Covariant



n So, shouldn’t we leverage that?

n YES, absolutely

n But, IN ADDITION, we want our agents to be able to 
intelligently collect their own data, and that’s what 
this tutorial will cover

But Wait: Lots of Passive Data Out There…

Pieter Abbeel -- UC Berkeley | Covariant



Interlude: An Attempt at a Complete Picture

LARGE NN
(robot brain)

Internet Video

Internet Text

Unsupervised 
Representation 

Learning

Simulator (mostly)

Real-world (little)

Reward-Free 
RL 👩💻

Demonstrations

Few-Shot 
Imitation 
Learning

Human-in-the-
Loop RL

Multi-Task RL 

Pieter Abbeel -- UC Berkeley | Covariant
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n In real world, reward can be tedious to provide

n Alleviate need for bootstrapping from demonstrations

n Superhuman solutions
n Debug a new game for unexpected issues

n Circuit design

n Scientific discovery RL

n …

Why Study Agents Collecting Their Own Data (1/2) 

Pieter Abbeel -- UC Berkeley | Covariant



n Might lead to more robust learning (or not)

n “general brain” for learning decision making

n AI motivation

Why Study Agents Collecting Their Own Data (2/2) 

Pieter Abbeel -- UC Berkeley | Covariant

[Held & Hein, 1969]
also: [Walk, Shepherd, Miller, 1988]

“Give an AI agent a task-reward, they can learn for a day, 
give an AI agent intrinsic reward, they can learn for a lifetime.”

It’s how humans/babies learn
lots of play (+ some supervision)

[image source: Francis Vachon]



n What’s going on here?      
[see, e.g., Gopnik (Berkeley), Schulz (MIT)]

n How to formalize into machine 
learning / silicon compute?

n What does success even mean?  
Robot rolling on the floor with toys??

Play

Pieter Abbeel -- UC Berkeley | Covariant



Formalizing “Play”: “Reward-Free Pre-Training (RFPT)”

Reward-free 
Pre-Training

Sample complexity 
typically not too heavily 

scrutinized here

Possible measures of success:

- 𝜋(𝑎|𝑠): 0-shot
- 𝜋(𝑎|𝑠): fine-tune
- 𝜋(𝑎|𝑠, 𝑔): Goal-conditioned policy
- 𝜋(𝑎|𝑠, 𝑧): Latent-conditioned 

policy
- 𝜋(𝑎|𝑠, 𝑧): Diverse skill set
- { 𝑠, 𝑎, 𝑠! }: Data set
- 𝑓" 𝑠! 𝑠, 𝑎 : Dynamics model

Further challenge: some works are in image space, some use hardcoded image 
encodings, some in state space, some use hand-selected subsets of state variables, etc..  
Same video demo could have very different assumptions…



n We don’t simply leave a baby/child on its own for 18 years, then expect them 
to quickly fine-tune into adult life

n Similarly, it’s likely our AI agents will benefit from a more interleaved approach 
between training on their own and getting access to side-information, e.g.

- human providing some extrinsic rewards
- human providing some rewards for good exploration
- passive data being leveraged for representation learning
- passive data being leveraged for guiding what’s ”interesting” to explore
- etc…

n Such variants are beyond the scope of this tutorial

n Such variants will likely still greatly benefit from progress in “pure” RFPT regime

Is Reward-Free Pre-Training Realistic?

Pieter Abbeel -- UC Berkeley | Covariant



n Yes, very related, and so are research ideas/results for each

n Often arbitrary in which of the 2 contexts an idea ends up (and sometimes both)

n Ideas often complementary and by combining can amplify each other

Reward-Free Pre-Training

Pieter Abbeel -- UC Berkeley | Covariant

Exploration

- First: 
pre-train without task reward available

- Then: 
leverage pre-training to learn faster 
once task reward is available 

- Task reward is available from the very 
beginning

- But: often task reward provides very 
little signal in early learning stages, 
hence AI Agent needs exploration to 
find out how to achieve task reward

- Note: as long as no task reward has 
been experienced, the AI Agent is 
forced to learn reward-free



n Problem Motivation

n Baseline RL Algorithms Refresher

n Intrinsic Rewards for Reward-Free Pre-Training and Exploration

n Algorithmic Approaches to Exploration (can complement intrinsic reward RFPT!)

n Algorithmic Approaches to Reward-Free Pre-Training

Outline

Pieter Abbeel -- UC Berkeley | Covariant



Reinforcement Learning (RL)

Pieter Abbeel -- UC Berkeley | Covariant

n Popular RL Algorithms

n PPO

n SAC / TD3

n DDQN

n Model-Based RL (MBRL)



Popular RL Algorithms are Mostly Optimizers, with Modest Exploration

Pieter Abbeel -- UC Berkeley | Covariant

n PPO, SAC, TD3, DDQN, MBRL in their standard forms

n use experience so far to optimize expected reward in next roll-out

n yet also have a very basic exploration mechanism built-in:
n Epsilon-greedy
n Boltzmann exploration (direct in DDQN, indirect in SAC)
n Parameter perturbation [Plappert et al, 2017]
n Noisy-nets [Fortunato et al, 2017]

à Since so simple, remains very popular to just rely on these, even if clearly 
not very exploratory

à But, hopefully, this statement about popularity and about superior 
simplicity can be untrue a few years from now J



n Problem Motivation

n Baseline RL Algorithms Refresher

n Reward-Free Pre-Training and Exploration through Baseline RL 
Algorithms + Intrinsic Rewards

n Algorithmic Approaches to Exploration (can complement intrinsic reward RFPT!)

n Algorithmic Approaches to Reward-Free Pre-Training

Outline

Pieter Abbeel -- UC Berkeley | Covariant



n Intrinsic Reward = generic reward signal that encourages 
experiencing diversity

n IF we can design such Intrinsic Reward

n THEN we can simply use our existing RL Algorithms as 
Optimizers to yield exploratory / pre-training behaviors

Main Idea behind Intrinsic Rewards

Pieter Abbeel -- UC Berkeley | Covariant



Reward-Free Pre-Training
with Intrinsic Rewards

Pieter Abbeel -- UC Berkeley | Covariant

Exploration 
with Intrinsic Rewards

Run PPO / SAC / TD3 / DDQN / etc.:

max 𝐸 [ 𝑟 #$%&#$'(#( ]

Run PPO / SAC / TD3 / DDQN / etc.:

max 𝐸 [ 𝑟 %)'* + 𝜆 𝑟 #$%&#$'(#( ]

Possible measures of success:

- 𝜋(𝑎|𝑠): 0-shot
- 𝜋(𝑎|𝑠): fine-tune
- 𝜋(𝑎|𝑠, 𝑔): Goal-conditioned policy
- 𝜋(𝑎|𝑠, 𝑧): Latent-conditioned 

policy
- 𝜋(𝑎|𝑠, 𝑧): Diverse skill set
- { 𝑠, 𝑎, 𝑠! }: Data set
- 𝑓" 𝑠! 𝑠, 𝑎 : Dynamics model

Measure of success:

- performance on 𝑟 %)'*



Intrinsic Rewards

Pieter Abbeel -- UC Berkeley | Covariant[Oudeyer and Kaplan, 2007]

[Schmidhuber, 1991]



Intrinsic Rewards

Pieter Abbeel -- UC Berkeley | Covariant[Oudeyer and Kaplan, 2007]



n Knowledge-based: Surprise / unpredictability / how much 
learned about world from experience

n Competence-based: Empowerment / Skills

n Data-based: Entropy (i.e. coverage) of data collected

Three Main Types of Intrinsic Reward

Pieter Abbeel -- UC Berkeley | Covariant

Note 1: Not the only way to categorize, but it’s a categorization that can help us 
understand some of the most prominent work
Note 2: Data can give us Knowledge which can give us Competence, so one could possibly 
think of Data as the most fundamental, however, it’s also least informed during data
collection about the value of the data (for knowledge, for building competences)…



n Knowledge-based: Surprise / unpredictability / how much 
learned about world from experience

n Competence-based: Empowerment / Skills

n Data-based: Entropy (i.e. coverage) of data collected

Three Main Types of Intrinsic Reward

Pieter Abbeel -- UC Berkeley | Covariant



n Key Idea: 

n Train dynamics model on data collected by agent

n Intrinsic reward = prediction error of the learned dynamics model

Intrinsic Reward: Error in Learned Dynamics Model

Pieter Abbeel -- UC Berkeley | Covariant[Stadie, Levine, Abbeel, 2015; Achiam, Sastry, 2017]

Auto-encoder Dynamics model in latent space



Intrinsic Reward: Error in Learned Dynamics Model

Pieter Abbeel -- UC Berkeley | Covariant[Stadie, Levine, Abbeel, 2015; Achiam, Sastry, 2017]

Experimental Findings: tends to often aid exploration / learning speed in Atari



n Maybe:

n VAE spends time modeling things the agent doesn’t control

n Dynamics model makes prediction errors on things the agent doesn’t 
control (“noisy TV”)

Why not doing even better?

Pieter Abbeel -- UC Berkeley | Covariant



Inverse Dynamics Model for Encoder

[Pathak, Agrawal, Efros, Darrell, 2017] [See also: Progress Drive by Kaplan and Oudeyer, 2005 for study of noisy TV with remote / solutions]



Inverse Dynamics Model for Encoder

Key findings:
- Inverse dynamics helps focus learning
- 0-shot performance in many games

[Pathak, Agrawal, Efros, Darrell, 2017] Pieter Abbeel -- UC Berkeley | Covariant



Deeper dive on feature space?

Pieter Abbeel -- UC Berkeley | Covariant

- Pixels
- Random features
- VAE
- Inverse Dynamics

Findings:
- Random features do well
- Learned features generalize better



n Intrinsic Reward:

(with features trained with inverse dynamics)

n How can it still break down?
n What if agent encounters dice and keeps rolling them?  

n It’ll keep getting intrinsic reward, b/c the forward model keeps failing

n More generally, need to distinguish:
n Epistemic Uncertainty
n Aleatoric Uncertainty

Current Status

Pieter Abbeel -- UC Berkeley | Covariant



n Planning to be Surprised [Sun, Gomez, Schmidhuber, 2011]

Reward for reducing entropy of posterior distribution over possible dynamics models

n VIME: Variational Information Maximization Exploration [Houthooft, Chen, 
Duan, Schulman, De Turck, Abbeel, 2017]

n Variational Bayes NN approximation to above (intractable objective)

n Self-Supervised Exploration via Disagreement [Pathak, Gandhi, Gupta, 2019]

n Learn ensemble of NN dynamics models à disagreement signals epistemic uncertainty

Intrinsic Reward for Reduction in Epistemic Uncertainty

Pieter Abbeel -- UC Berkeley | Covariant



VIME

Pieter Abbeel -- UC Berkeley | Covariant

Intrinsic Reward for Reduction in Epistemic Uncertainty

[Houthooft, Chen, Duan, Schulman, De Turck, Abbeel, 2017]



VIME

Pieter Abbeel -- UC Berkeley | Covariant

Intrinsic Reward for Reduction in Epistemic Uncertainty

[Houthooft, Chen, Duan, Schulman, De Turck, Abbeel, 2017]



Disagreement

Pieter Abbeel -- UC Berkeley | Covariant

Intrinsic Reward for Reduction in Epistemic Uncertainty

[Pathak*, Gandhi*, Gupta, 2019]

Baseline: random exploration Disagreement

Setup: Overhead Camera; Action space = (position, direction, gripper angle, gripper opening)



n Intrinsic Reward =  (reduction in) epistemic uncertainty

n As agent collects high intrinsic reward data, the epistemic 
uncertainty gets driven down

n What might still cause agent inefficiency?
n Agent only gets rewarded for (reduction in) epistemic uncertainty 

*after* it’s achieved it.  I.e. agent needs to be lucky, and will then be 
encouraged to learn from that luck.

n More generally, can distinguish:
n Retrospective signals
n Prospectively seeking out signals

Current Status

Pieter Abbeel -- UC Berkeley | Covariant



Planning to Achieve Disagreement
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State

Encoder

World 
Model

Features ht

Image

ot

st

Action at Imagination Rollout of the World Model

at

ht

aT

Intrinsic 
Reward

Vt

…

VT

st st+1 sT

Vt+1 at+1

Intrinsic 
Reward

Intrinsic 
Reward

Intrinsic Reward ≜ Latent 
Disagreement

w1

st at

w2

st at

wK

st at

…

Planning in the Latent Space

Practical	Considerations:
A parametric policy is used for quick inference, and is trained 
completely in the imagination of the world model

[Sekar*, Rybkin*, Daniilidis, Abbeel, Hafner, Pathak, 2020: Planning to Explore] [Also: Shyam, Jaskowski, Gomez, 2018: MAX]



Self-Supervised Exploration Results

[Sekar*, Rybkin*, Daniilidis, Abbeel, Hafner, Pathak, 2020: Planning to Explore] Pieter Abbeel -- UC Berkeley | Covariant



[Sekar*, Rybkin*, Daniilidis, Abbeel, Hafner, Pathak, 2020: Planning to Explore]

Zero-Shot Reinforcement Learning

Pieter Abbeel -- UC Berkeley | Covariant



Oracle	(supervised) Oracle	(supervised)Our	Agent	(few-shot) Our	Agent	(few-shot)

Cheetah	Run

Hopper	Hop

Reacher	Easy

Walker	Walk

Few-Shot Adaptation

[Sekar*, Rybkin*, Daniilidis, Abbeel, Hafner, Pathak, 2020: Planning to Explore] Pieter Abbeel -- UC Berkeley | Covariant



Few-Shot Adaptation

[Sekar*, Rybkin*, Daniilidis, Abbeel, Hafner, Pathak, 2020: Planning to Explore] Pieter Abbeel -- UC Berkeley | Covariant



Can one model be used for multiple tasks?

[Sekar*, Rybkin*, Daniilidis, Abbeel, Hafner, Pathak, 2020: Planning to Explore] Pieter Abbeel -- UC Berkeley | Covariant



n Knowledge-based: Surprise / unpredictability / how much 
learned about world from experience

n Competence-based: Empowerment / Skills

n Data-based: Entropy (i.e. coverage) of data collected

Three Main Types of Intrinsic Reward

Pieter Abbeel -- UC Berkeley | Covariant



n Why care about the agent’s competences?

n High competence is a natural desideratum after pre-training

n Competence-based RFPT can be seen as end-to-end optimizing for the 
competence desideratum during RFPT

n Other desiderata are possible, of course, e.g. 0-shot, fast fine-tuning, 
dataset coverage, high quality dynamics model

n High competence might be achievable in “Phase 2” assuming great 
dataset coverage or great learned dynamics model

Competences

Pieter Abbeel -- UC Berkeley | Covariant



n Formalizes and quantifies the degrees of freedom (or options) that an organism or agent 
has as a proxy for “preparedness”

n Behavioral Empowerment Hypothesis

n “The adaptation brought about by natural evolution produced organisms that in absence of 
specific goals behave as if they were maximising their empowerment.”

n Evolutionary Empowerment Hypothesis

n “The adaptation brought about by natural evolution increases the empowerment of the 
resulting organism.”

n AI Empowerment Hypothesis

n “Empowerment provides a task-independent motivation that generate AI behaviour which is 
beneficial for a range of goal-oriented behaviour.”

Formalizing Competence: Empowerment

[Klyubin, Polani, Nehaniv, 2005: Empowerment: A Universal Agent-Centric Measure of Control] [Salge, Glackin, Polani, 2013: Empowerment: An Introduction]



Empowerment

- Measures the optionality a (perfect) agent can create over its future
- As phrased, is a number associated with a state + environment
- Empowerment can be increased by:

(1) going to more empowered states
(2) changing the agent/environment

[Klyubin, Polani, Nehaniv, 2005: Empowerment: A Universal Agent-Centric Measure of Control] [Salge, Glackin, Polani, 2013: Empowerment: An Introduction]



Empowerment

- Measures the optionality a (perfect) agent can create over its future
- As phrased, is a number associated with a state + environment
- Empowerment can be increased by:

(1) going to more empowered states
(2) changing the agent/environment

[Klyubin, Polani, Nehaniv, 2005: Empowerment: A Universal Agent-Centric Measure of Control] [Salge, Glackin, Polani, 2013: Empowerment: An Introduction]

So, what does this have to do with Exploration / RFPT / Competences?

An agent has maximal competence if it has figured out a policy that achieves
the ”empowerment / channel capacity” available in its environment

à Intrinsic Reward that measures the empowerment level of the agent’s policy



n Find policy 𝜋! 𝑎 𝑠, 𝑧) such that 𝑀𝐼 𝑧 ; 𝜏 is maximized

n How to compute MI?

n 𝑀𝐼 𝑧 ; 𝜏 = 𝐻 𝑧 − 𝐻 𝑧 𝜏) = 𝐻(𝜏) − 𝐻(𝜏 | 𝑧)

n Both decompositions have been investigated (though mostly 
the first one)

Empowerment through Mutual Information Maximization

Pieter Abbeel -- UC Berkeley | Covariant



𝑀𝐼 𝑧 ; 𝜏 = 𝐻 𝑧 − 𝐻 𝑧 𝜏)

à 𝑟 "#$%"#&"' = log 𝑞( 𝑧 𝜏) − log 𝑝 𝑧

Variational Approximation to Mutual Information

Pieter Abbeel -- UC Berkeley | Covariant

n Intuition: need to be able to recover the 
“intent”/”latent” z from the trajectory; i.e. different z 
results in distinctly different trajectories

n For z discrete: this means training a classifier, and can 
set p(z) equal to uniform to maximize entropy



n SSN4HRL: 𝑟 !"#$!"%!& = log 𝑞' 𝑧 𝑠#) − log 𝑝 𝑧

n VIC: 𝑟 !"#$!"%!& = log 𝑞' 𝑧 𝑠() − log 𝑝 𝑧

n DIAYN / VISR: 𝑟 !"#$!"%!& = log 𝑞' 𝑧 𝑠#) − log 𝑝 𝑧

n VALOR: 𝑟 !"#$!"%!& = log 𝑞' 𝑧 𝑠):() − log 𝑝 𝑧

n DISCERN: 𝑟 !"#$!"%!& = log 𝑞' 𝑧 𝑠):() − log 𝑝 𝑧

Variational Approximation to Mutual Information: 
𝑀𝐼 𝑧 ; 𝜏 = 𝐻 𝑧 − 𝐻 𝑧 𝜏)

DISCERN is the only one to use continuous z, which doesn’t allow for a classifier, so it uses 
a contrastive approximation to the first term Pieter Abbeel -- UC Berkeley | Covariant



References for Previous Slide

Pieter Abbeel -- UC Berkeley | Covariant

n SSN4HRL: Florensa, Duan, Abbeel, 2017

n VIC: Gregor, Rezende, Wierstra, 2016

n DIAYN: Eysenbach, Gupta, Ibarz, Levine, 2018

n VALOR: Achiam, Edwards, Amodei, Abbeel, 2018

n DISCERN: Warde-Farley, Van de Wiele, Kulkarni, Ionesu, Hansen, Mnih, 2018

n VISR: Hansen, Dabney, Barreto, Warde-Farley, Van de Wiele, Mnih, 2019



Results Highlights: DIAYN



Results Highlights: DISCERN



Results Highlights: DISCERN



n Addresses slowness of fine-tuning

n Main ideas:

n Same MI objective as DIAYN

n Add success features [Barreto et al, 2017] to the agent

VISR

Pieter Abbeel -- UC Berkeley | Covariant[Hansen et al, 2019]



n Challenge: how to quickly adapt to new rewards?

n Key Ideas:

n Train with DIAYN (or similar)

n After training, we can consider z as indexing into tasks, with reward log q(z|s)

à use this as tasks for Meta-RL training

Unsupervised Meta-RL

Pieter Abbeel -- UC Berkeley | Covariant[Gupta*, Eysenbach*, Finn, Levine, 2018]



n Main idea: z (omega) more readily recoverable from s0 and sT than just sT

Relative VIC

[Baumli et al, 2020]



Relative VIC

[Baumli et al, 2020]



DADS

Pieter Abbeel -- UC Berkeley | Covariant

𝑟 !"#$!"%!& = log 𝑞' 𝑠#() 𝑠# , 𝑧) − log 𝑞' 𝑠#() | 𝑠#

[DADS: Sharma, Gu, Levine, Kumar, Hausman, 2019]



n Different papers treat tau slightly differently, but the bigger 
difference might be in other experiment design factors:
n Which RL algorithm is used?

n State-based or image-based (only DISCERN is image based)

n Termination conditions of episodes affect learning signal

n When state-based, which variables to include in tau?
n E.g. all state variables, vs. just x-y coordinates of ant robot?

Some Extra Perspective on MI(z; tau) = H(z) – H(z|tau)

Pieter Abbeel -- UC Berkeley | Covariant



n Embraces there is a natural split of the state:

n State of the agent (body)

n State of the environment around the agent

n Optimizes MI(agent state ; env state)
n i.e. incentivize the agent to visit agent states that affect the environment

MUSIC: Mutual Info State Intrinsic Control

Pieter Abbeel -- UC Berkeley | Covariant[Zhao, Gao, Abbeel, Tresp, Xu, 2021]



Pieter Abbeel -- UC Berkeley | Covariant

n The proposed intrinsic reward help the agent to quickly learn to solve 
different downstream tasks.

MUSIC: Mutual Info State Intrinsic Control

[Zhao, Gao, Abbeel, Tresp, Xu, 2021]



n Limited exploration signal:

n H(z) is maximized by simply sampling the latent from a high entropy 
distribution at the start of the trajectory

n H(z|tau) encourages re-visiting states for which the classifier can recover z, 
which in turn likely leads to also visiting nearby states and gradual expansion, 
but not a very strong signal

à Might want to combine with other exploration

More Perspective on MI(z; tau) = H(z) – H(z|tau)

Pieter Abbeel -- UC Berkeley | Covariant



n 𝑀𝐼 𝑧 ; 𝜏 = 𝐻(𝜏) − 𝐻(𝜏 | 𝑧)
n 𝐻(𝜏) directly encourages coverage / exploration

n − 𝐻(𝜏 | 𝑧) encourages predictability of the trajectory once we have 
decided on the latent z

n How to estimate entropy and conditional entropy over 
trajectories?
n à recent work showing promising results, we’ll look at this a bit later, 

when studying entropy based exploration/RFPT

How about the other decomposition of MI

Pieter Abbeel -- UC Berkeley | Covariant



n In case of very open-ended environments, info-theoretic 
approaches presented so far might keep busy forever
n Showcase humanoid on floor in many configurations ,but never bothers 

to stand up…

n How to know what data is relevant to collect?
n Option 1: passive data / human feedback

n Option 2: try to more directly measure “skill” in terms of what the 
neural net policy could learn

à ASP

Reverse Question: Can there be too much MI available?

Pieter Abbeel -- UC Berkeley | Covariant



n Key Idea: two-player game, Alice challenges Bob, which encourages Alice to 
try new things (explore) and Bob to acquire skill

n Algorithm:

n Alice does roll-out, gives final state as goal to Bob

n Bob learns goal-conditioned policy with goals set by Alice

n Alice intrinsic reward =  max(0, 𝑡* − 𝑡+ )

n Bob reward = −𝑡*
𝑡+ 𝑎𝑛𝑑 𝑡* are completion times of Alice and Bob

Asymmetric Self-Play (ASP)

Pieter Abbeel -- UC Berkeley | Covariant[Sikhbaatar, Lin, Kostrikov, Synnaeve, Szlam, Fergus, 2017]



Asymmetric Self-Play (ASP)

Pieter Abbeel -- UC Berkeley | Covariant[Sikhbaatar, Lin, Kostrikov, Synnaeve, Szlam, Fergus, 2017]

Mountain car Swimmer Gather



Scaled-up ASP

Pieter Abbeel -- UC Berkeley | Covariant[OpenAI et al 2021: Asymmetric Self-Play for Automatic Goal Discovery in Robotic Manipulation]

- Goal setting filter: Goals only valid if an object was moved
- 1 billion steps



Scaled-up ASP: 0-shot generalization

Pieter Abbeel -- UC Berkeley | Covariant[OpenAI et al 2021: Asymmetric Self-Play for Automatic Goal Discovery in Robotic Manipulation]



Scaled-up ASP: 0-shot generalization

Pieter Abbeel -- UC Berkeley | Covariant[OpenAI et al 2021: Asymmetric Self-Play for Automatic Goal Discovery in Robotic Manipulation]



n Knowledge-based: Surprise / unpredictability / how much 
learned about world from experience

n Competence-based: Empowerment / Skills

n Data-based: Entropy (i.e. coverage) of data collected

Three Main Types of Intrinsic Reward

Pieter Abbeel -- UC Berkeley | Covariant



Model-Based Interval Estimation Exploration Bonus (MBIE-EB)

Tabular MDPs: Count-based Exploration Bonus

[Strehl & Littman, 2008]
Pieter Abbeel -- UC Berkeley | Covariant



n Bellemare et al 2016: Unifying Count-based Exploration and Intrinsic Motivation

n learn P(s), change in P(s) can be connected to a pseudo-count

n Ostrovski et al 2017: Count-Based Exploration with Neural Density Models

n Similar to above, significantly improved performance thanks to better density models

n Tang et al 2017: #exploration

n NN hashes high-D observation into lower-dimensional space, use counts there

n Burda et al 2018: RND

n Train a neural net to match the classification of a random neural net on observations 
encountered; as long as discrepancy on a new observation, count considered low

High-D Spaces: Pseudo-Counts 

Pieter Abbeel -- UC Berkeley | Covariant



Density-based Pseudo-Counts

Pieter Abbeel -- UC Berkeley | Covariant[Bellemare, et al 2016]



Density-based Pseudo-Counts

Pieter Abbeel -- UC Berkeley | Covariant[Bellemare, et al 2016]



Directly Optimizing Entropy of Data Collected
● Incentivizing exploration by introducing intrinsic rewards based on a 

measure of state novelty

● State entropy as intrinsic reward

○ Maximizing state entropy ~= good state coverage

[MEPOL – Mutti, Pratissoli, Restelli, 2020] Pieter Abbeel -- UC Berkeley | Covariant



Directly Optimizing Entropy of Data Collected
● Incentivizing exploration by introducing intrinsic rewards based on a 

measure of state novelty

● State entropy as intrinsic reward

○ Maximizing state entropy ~= good state coverage

Measuring state entropy is intractable to 
compute in most setting 

[MEPOL – Mutti, Pratissoli, Restelli, 2020] Pieter Abbeel -- UC Berkeley | Covariant



● K-nearest entropy estimator

• Distribution à Store N number of visited 
states

• Compute the distance between each 
state and its K-NN 

K-Nearest-Neighbor Entropy Estimator

Singh, H., et al., 2003. Nearest neighbor estimates of entropy. American journal of mathematical and management sciences, 23(3-4), pp.301-321.
MEPOL – Mutti, Pratissoli, Restelli, 2020



APT: Active Pre-Training

[H Liu & P Abbeel, 2020] Pieter Abbeel -- UC Berkeley | Covariant



Experiments: DM Control Suite

Pieter Abbeel -- UC Berkeley | Covariant



Experiments: Atari



How about size of replay buffer for entropy estimates?

à Keep around cluster representatives for entropy estimation

Reinforcement Learning with Prototypical Representations, Yarats, Fergus, Lazaric, Pinto, 2021 Pieter Abbeel -- UC Berkeley | Covariant



n Similar to how VISR added Successor Features to DIAYN for faster 
adaptation

n APS add Successor Features to APT

Active Pre-Training with Successor Features (APS)

[APS: Liu & Abbeel, 2021] Pieter Abbeel -- UC Berkeley | Covariant



APS on Atari

[APS: Liu & Abbeel, 2021] Pieter Abbeel -- UC Berkeley | Covariant



n Main idea:

n Short-term exploration through particle-based entropy

n Long-term exploration through RND

Never Give Up 

[Never Give Up: Learning Directed Exploration Strategies, Badia et al, 2020] Pieter Abbeel -- UC Berkeley | Covariant



Some Theory

Pieter Abbeel -- UC Berkeley | Covariant



n Problem Motivation

n Baseline RL Algorithms Refresher

n Intrinsic Rewards for Reward-Free Pre-Training and Exploration

n Algorithmic Approaches to Exploration (can complement intrinsic reward RFPT!)

n Algorithmic Approaches to Reward-Free Pre-Training

Outline

Pieter Abbeel -- UC Berkeley | Covariant



n Key Idea permeating most works: Optimism in Face of Uncertainty

n If haven’t visited a state, let’s assume it might have high reward, until we 
experience otherwise

n Classic references (experiments largely tabular / linear)

Key Idea: Optimism in Face of Uncertainty

Lai and Robbins’ Upper Confidence Bounds 
(UCB) 1985; 
Sutton’s Dyna, 1990; 
Schmidhuber’s Curiosity 1991; 
Kaelbling’s Interval Exploration 1993; 
Moore & Atkeson’s Prioritized Sweeping 1993; 

Kaelbling, et al, RL Survey 1996; 
Kearns and Singh, E3 2002; 
Brafman and Tennenholtz, RMax 2002 
Peter Auer’s UCB regret bounds, 2002; 
Strehl and Littman, Model-based Interval Estimation 
(MBIE), 2008

Pieter Abbeel -- UC Berkeley | Covariant



n MCTS Assumes:  (i) model-based RL  OR (ii) sim with resets to 
any previously experienced state

n PUCB value: 

Algorithmic Exploration: MCTS

à Favor less frequently 
visited children in the tree

AlphaGo

[Coulom 2008; Kocsis & Szepesvari 2006; Gelly, Wang, Munos, Teytaud, 2006; Silver et al 2015] Pieter Abbeel -- UC Berkeley | Covariant



Q: How to more directly represent posterior over value functions?

A: DQN with an ensemble of Q functions

Q: How to use this posterior?

A1: Posterior Sampling / Thompson Sampling / “Bootstrap”

A2: Create Upper Confidence Bound (UCB)

Algorithmic Exploration: Q Ensembles

Pieter Abbeel -- UC Berkeley | Covariant



Algorithmic Exploration: Q Ensembles: Thompson Sampling / Bootstrap

Pieter Abbeel -- UC Berkeley | Covariant[Osband, Blundell, Pritzel, Van Roy, Deep Exploration via Bootstrapped DQN, 2016]

Key idea: Rather than independent action selection in each step, use the same 
member of the Q-ensemble for the entire roll-out 

à more consistent behavior, which aids exploration 



Algorithmic Exploration: Q Ensembles: Thompson Sampling / Bootstrap

Pieter Abbeel -- UC Berkeley | Covariant[Osband, Blundell, Pritzel, Van Roy, Deep Exploration via Bootstrapped DQN, 2016]



n How to add UCB to deep Q-learning (DQN)?

Algorithmic Exploration: Q-Ensembles: Q-UCB

[Chen, Sidor, Abbeel, Schulman Q-UCB, 2017]

mean and std across 
ensemble of Q-functions

Pieter Abbeel -- UC Berkeley | Covariant



Algorithmic Exploration: Q-Ensembles: Q-UCB

[Chen, Sidor, Abbeel, Schulman Q-UCB, 2017] Pieter Abbeel -- UC Berkeley | Covariant



n Key idea: leverage value function ensemble to plan for 
exploration

Algorithmic Exploration: V-Ensemble + MPC: POLO

Pieter Abbeel -- UC Berkeley | Covariant[Lowrey*, Rajeswaran*, Kakade, Todorov, Mordatch, POLO, 2019]

MPC with optimistic
final state value through 
softmax over ensemble



Algorithmic Exploration: V-Ensemble + MPC: POLO

Pieter Abbeel -- UC Berkeley | Covariant[Lowrey*, Rajeswaran*, Kakade, Todorov, Mordatch, POLO, 2019]



Key Contributions beyond Q-UCB:

n Q: If we use Q-UCB, can the off-policy action selection affect learning stability?

n A: Yes.  (see also recent work on stabilizing offline RL, investigating same)

n Q: If we have a Q-ensemble, can we leverage it to stabilize/improve the Q-learning 
update?

n A: Yes, and it can more generally mitigate noise propagation that happens in regular 
DQN/Q-learning (which is especially present when Q-learning is run off-policy*)

Algorithmic Exploration: Q-Ensembles: SUNRISE

Pieter Abbeel -- UC Berkeley | Covariant

*Related: Chen, Schulman, Abbeel, Boltzmann Exploration Q-learning is secretly on-policy actor critic…

[Lee, Laskin, Srinivas, Abbeel, SUNRISE 2020]



■ Error propagation issue in Q-learning

■ Reweightt each term in Bellman backup loss

Algorithmic Exploration: Q-Ensembles: SUNRISE

error propagates

unseen (s,a) → high error

confidence score about target value based 
on variance of Q-ensemble

[Lee, Laskin, Srinivas, Abbeel, SUNRISE 2020] Pieter Abbeel -- UC Berkeley | Covariant



■ Performance on DeepMind Control Suite at 100K and 500K 
environment steps

■ SUNRISE consistently improves the performance of RAD

Algorithmic Exploration: Q-Ensembles: SUNRISE

Pieter Abbeel -- UC Berkeley | Covariant



■ Performance on Atari games at 100K interactions

Algorithmic Exploration: Q-Ensembles: SUNRISE

Consistently 
outperform Rainbow

SOTA on 13 out of 26 
environments

Pieter Abbeel -- UC Berkeley | Covariant



n Problem Motivation

n Baseline RL Algorithms Refresher

n Intrinsic Rewards for Reward-Free Pre-Training and Exploration

n Algorithmic Approaches to Exploration (can complement intrinsic reward RFPT!)

n Algorithmic Approaches to Reward-Free Pre-Training

Outline

Pieter Abbeel -- UC Berkeley | Covariant



n Main idea: 

n keep track of frontier of where the AI Agent has been

n then set goals near this frontier and/or explicitly revisit past state on 
frontier and randomly explore from there

Algorithmic RFPT: Frontier Approaches

Pieter Abbeel -- UC Berkeley | Covariant



n Train policy 𝜋 𝑎 𝑠, 𝑔)

n Key idea:
n To improve learning signal / alleviate exploration needs:

Hindsight-relabel 50% of goals g in the replay buffer to match the final 
achieved state in the corresponding trajectory

n Leads to natural expansion of goals that can be achieved

Algorithmic RFPT: Frontier: HER

[Andrychowicz et al, 2017: Hindsight Experience Replay]
[Schaul et al, 2015: Universal Value Function Approximators]
[Kaelbling 1993: Learning to Achieve Goals]

Pieter Abbeel -- UC Berkeley | Covariant



n Train policy 𝜋 𝑎 𝑠, 𝑔)

n Key idea:
n To improve learning signal / alleviate exploration needs:

Hindsight-relabel 50% of goals g in the replay buffer to match the final 
achieved state in the corresponding trajectory

n Leads to natural expansion of goals that can be achieved

Algorithmic RFPT: Frontier: HER

[Andrychowicz et al, 2017: Hindsight Experience Replay]
[Schaul et al, 2015: Universal Value Function Approximators]
[Kaelbling 1993: Learning to Achieve Goals]

Pieter Abbeel -- UC Berkeley | Covariant



Quantitative Evaluation

Pieter Abbeel -- UC Berkeley | Covariant



Quantitative Evaluation

~3s/episode à 1.5 days for 50 epochs, 6 days for 200 epochs
Pieter Abbeel -- UC Berkeley | Covariant



n HER assumes access to underlying state

n RIG adapts HER to Image Inputs

n operates in latent space of a VAE

n can use latent space for new goal setting

n SkewFit shifts RIG / HER goal sampling

Algorithmic RFPT: Frontier: RIG / SkewFit

[RIG: Nair, Pong, Dalal, Bahl, Lin, Levine, 2018] [Skew-Fit: Pong*, Dalal*, Lin*, Nair, Bahl, Levine, 2019]



n Key ideas:

n Train goal-conditioned policy / Q-function (~HER)

n Sample Goals of Intermediate Difficulty – goal generator = GAN

Algorithmic RFPT: Frontier: GoalGAN

[GoalGAN: Florensa*, Held*, Geng*, Abbeel, 2017: Automatic Goal Generation for RL Agents]
see also: [CURIOUS: Colas, Fournier, Sigaud, Chetouani, Oudeyer, 2019] – considers learning progress  (vs. GoalGAN considers learning status)



n Key ideas:

n Train goal-conditioned policy / Q-function (~HER)

n Sample Goals based on Q-Value Disagreement

Algorithmic RFPT: Frontier: Value Disagreement

[Zhang, Abbeel, Pinto, 2020: Automatic Curriculum Learning through Value Disagreement]



Algorithmic RFPT: Frontier: Value Disagreement

[Zhang, Abbeel, Pinto, 2020: Automatic Curriculum Learning through Value Disagreement]



n Key idea:

n When visiting a state with low visitation count, specifically go to that state 
again in future roll-outs + randomly explore around that state, which will 
likely yield new such exploration goal states

n Original paper: assume ability to deterministically return or access to 
resets; later versions train a goal conditioned policy

n Key assumption: reasonable way to divide state space into cells, and not 
too many cells to be able to explore them all --- done by low-res image in 
Atari

n Main result: breakthrough/”solve” Atari hard-exploration games

Algorithmic RFPT: Frontier: GoExplore

[Go-Explore: Ecoffet, Huizinga, Lehman, Stanley, Clune, 2019; also: First Return, Then Explore: Ecoffet, H, L, S, C, 2020]



Algorithmic RFPT: Frontier: GoExplore
Montezuma’s Revenge Atari Game Performance

[Go-Explore: Ecoffet, Huizinga, Lehman, Stanley, Clune, 2019; also: First Return, Then Explore: Ecoffet, H, L, S, C, 2020]



Algorithmic RFPT: Frontier: GoExplore
Montezuma’s Revenge Atari Game Performance

[Go-Explore: Ecoffet, Huizinga, Lehman, Stanley, Clune, 2019; also: First Return, Then Explore: Ecoffet, H, L, S, C, 2020]



n Brings together ideas from ASP and GoExplore

Algorithmic RFPT: Frontier: SelfPlayer

Pieter Abbeel -- UC Berkeley | Covariant[SelfPlayer: Laskin, Rudes, Cang, Abbeel, 2021]



n Brings together ideas from ASP and GoExplore

Algorithmic RFPT: Frontier: SelfPlayer

Pieter Abbeel -- UC Berkeley | Covariant[SelfPlayer: Laskin, Rudes, Cang, Abbeel, 2021]



n Brings together ideas from ASP and GoExplore

Algorithmic RFPT: Frontier: SelfPlayer

Pieter Abbeel -- UC Berkeley | Covariant[SelfPlayer: Laskin, Rudes, Cang, Abbeel, 2021]



n Problem Motivation

n Baseline RL Algorithms Refresher

n Intrinsic Rewards for Reward-Free Pre-Training and Exploration

n Algorithmic Approaches to Exploration (can complement intrinsic reward RFPT!)

n Algorithmic Approaches to Reward-Free Pre-Training

Summary

Pieter Abbeel -- UC Berkeley | Covariant



n Clearer evaluations / comparisons

n Right combination of components?

n Simpler / more robust versions à supplant existing simple SAC/TD3/PPO/DQN 
baselines

n Open-ended environments are the frontier; but even regular vision-based 
environments still challenging

n Better fine-tuning/adaptation

n Can it lead to more robust vision

n Showcase truly unexpected solutions (e.g. circuit design / ..)

Many Research Opportunities

Pieter Abbeel -- UC Berkeley | Covariant



Some Additional Perspective

Pieter Abbeel -- UC Berkeley | Covariant



Thank you!
pabbeel@cs.berkeley.edu


