Self-Attention for Vision

Ashish Vaswani¹, Prajit Ramachandran¹, and Aravind Srinivas²

¹ Google Research, ² UC Berkeley

Self-Attention's moment in Vision has arrived

Image Classification

Object detection

DETR, Carion et al.

Multimodal models

UNITER, Chen et al.

Vokenization, Tan et al.

Emergent localization

Figure 1: Self-attention from a Vision Transformer with 8×8 patches trained with no supervision. We look at the self-attention of the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model automatically learns class-specific features leading to unsupervised object segmentations.

DINO, Caron et al.

Video

ViVIT, Arnab et al.

Outline

Motivation (30-45 minutes)

10 min Break

Designing self-attention models for vision (30-45 minutes)

10 minute break

Brief survey of self-attention in Vision

Universality in deep learning

Universality: developing components that work across all possible settings

Modern deep learning is only partly universal

Universal

- Matrix-vector multiplication
- ReLU
- Residual connections
- Maximum likelihood estimation
- Parameter initialization
- Optimizer
- Regularizations

Not Universal

- Mixing primitive
- Data preprocessing
- Input format
- Output format
- Data augmentation
- Feature normalization
- Hyperparameters

Universality has several core benefits

Generalization to new settings

• Simplicity of building models

• Minimizes explicit constraints, instead preferring to learn from data

Large impact even from small improvements

Modern deep learning is only partly universal

Universal

- Matrix-vector multiplication
- ReLU
- Residual connections
- Maximum likelihood estimation
- Parameter initialization
- Optimizer
- Regularizations

Not Universal

- Mixing primitive
- Data preprocessing
- Input format
- Output format
- Data augmentation
- Feature normalization
- Hyperparameters

Our focus: build a universal mixing primitive

- Operations that integrate information across entities with relationships
- Examples of entities:
 - Words
 - Pixels
 - Points in a cloud
 - Graph vertices
- Examples of relationships:
 - Geometric locality
 - Elements of the same set
 - Graph edges
- Critical for deep learning

Attention is a promising candidate for universality

• Theoretical: flexibility to handle many types of data

Practical: efficient mapping to modern hardware

• Empirical: scales well to large models and data

Expanding the universe of self-attention

Attention dominates language

Convolution dominates (dominated?) vision

Can we bring attention to vision?

Self-attention: A perspective from langauge

The Deep Learning transformation in language

Learning continuous representations of variable length sequences

Machine translation, language modeling, summarization, question answering...

RNNs: Sequential models for representation learning

LSTMs, GRUs, Quasi-RNNs...

Advanced state-of-the-art in several NLP tasks.

Recurrent Neural Networks

Limitations of RNNs

Computations for over positions cannot be parallelized

Long-range interactions are bottlenecked by a fixed size memory

Convolutional Neural Networks?

Convolutional neural networks for language

Each position can compute representations in parallel per layer

Exploits local dependencies

Long-range interactions in linear or logarithmic number of layers.

Attention

Encoder-decoder attention (<u>Bahdanau et al., 2014</u>): Content-based interactions between input and output words

Attention mimics alignments

Discrete

$$P(\alpha_{ij} \mid \{e_1, \dots, e_n\}, \{f_1, \dots, f_n\})$$

Brown et al., 1993

$$lpha_{ij} = rac{\exp(\mathbf{s}(\mathbf{h}_i^{\mathbf{x}}, \mathbf{h}_j^{\mathbf{y}}))}{\sum\limits_{i=1}^{T} \exp(\mathbf{s}(\mathbf{h}_i^{\mathbf{x}}, \mathbf{h}_j^{\mathbf{y}}))}$$

Self-Attention

Self-Attention

Single-shot interaction between all-pairs of words

Gating/multiplicative interactions.

Trivial to parallelize (per layer).

Previous work

Classification & regression with self-attention:

Parikh et al. (2016), Lin et al. (2016)

Self-attention with RNNs:

Long et al. (2016), Shao, Gouws et al. (2017)

Recurrent attention:

Sukhbaatar et al. (2015)

The Transformer Softmax Feed-forward Feed-forward **Encoder-Decoder Attention** Self-Attention Self-Attention **FFNN FFNN FFNN FFNN** Position-wise Feed-forward **FFNN FFNN FFNN FFNN** Position-wise Encoder-Decoder Attention Feed-forward softmax softmax Self-Attention Self-Attention p_2 Satz, Let's Representieren wir diesen this sentence, represent

Attention is Cheap!

FLOPs

Self-Attention	O(length ² · dim)
RNN (LSTM)	O(length · dim²)
Convolution	O(length · dim² · kernel_width)

Attention is Cheap!

FLOPs

Self-Attention	O(length ² · dim)	$= 4.10^9$
RNN (LSTM)	O(length · dim²)	= 16.109
Convolution	O(length · dim² · kernel_width)	$= 6.10^9$

length=1000 dim=1000 kernel_width=3

Convolutions

Self-Attention: Averaging

Attention head: Who

Attention head: Did What?

Attention head: To Whom?

Multihead Attention

Why self-attention for vision?

Recap

Modeling long-range interactions between words (pixels).

Useful for longer sentences (images).

Different heads can model different kinds of interactions between words (pixels)

Self-similarity in images

Source

Self-Similarity in Images

Starry Night (Van Gogh, June 1889)

Self-similarity in segmentation

Source

Texture Synthesis with Self-Similarity

Texture Synthesis by Non-parametric Sampling (Efros and Leung, 1999)

Non-local Means

BCM 2005, Wang et al., 2018

Non-local Means

$$y_{ij} = \sum_{a,b \in \mathcal{N}(i,j)} f(i,j,a,b) x_{ab},$$

$$f(i,j,a,b) = \frac{1}{Z(i,j)} e^{-\frac{||x_{ij} - x_{ab}||_2^2}{h^2}}$$

BCM 2005, Wang et al., 2018

Bilateral filters

$$y_{ij} = \sum_{a,b \in \mathcal{N}(i,j)} f(i,j,a,b) x_{ab},$$

$$f(i,j,a,b) = rac{1}{Z(i,j)} \mathrm{e}^{-rac{(i-a)^2+(j-b)^2}{2\sigma_d^2} - rac{||x_{ij}-x_{ab}||_2^2}{2\sigma_r^2}}$$

Tomasi and Manduchi, 1998

Self-Attention

$$y_{ij} = \sum_{a,b \in \mathcal{N}(i,j)} f(i,j,a,b)g(x_{ab}),$$

$$f(i,j,a,b) = \frac{1}{Z(i,j)} e^{\left(x_{ij}^{\top} W_q^{\top} W_k x_{ab}\right)}$$

$$g(x_{ab}) = W_v x_{ab}$$

Vaswani et al., 2017

Self-attention as a data dependent convolution

$$y_{ij} = \sum_{a,b \in \mathcal{N}(i,j)} f(i,j,a,b) x_{ab},$$

Convolution:

$$f(i,j,a,b) = W_{a-i,j-b}$$

$$f(i,j,a,b) = \frac{1}{Z(i,i)} e^{x_{ij}^\top W_q^\top W_k X_{ab}} W_v$$

Takeaways

Self-attention can model long-range interactions between pixels in an image

Self-attention can model the self-similarity within images

Self-attention (without distance information) can be seen a data dependent convolution.

Guidelines for developing an attention-based vision model

Build fully attentional models

- Reuse as many vision-designed components as possible
 - Already verified to work for vision
 - Ensures attention is a general operator

Replace all the spatial mixing convolutions with attention

Guidelines for developing an attention-based vision model

Build fully attentional models

- Reuse as many language-designed components as possible
 - Already verified to work for language
 - Ensures attention is a general operator

ViT (Dosovitsky et al.)

Designing attention models for vision

Vision tasks

Let's focus on classification for now

How do we design vision attention models?

ML design philosophy:

Adapt a pre-existing model.

Transformer

Transformer Encoder

Transformers for NLP

Computation in Transformer

Idea: treat each pixel as a token, and pass to a Transformer

Idea: treat each pixel as a token, and pass to Transformer

Problem: it's too expensive!

- For a 224x224 images, there ~50K pixels
- Attention cost scales quadratically with the input length

Controlling cost is the perennial problem of attention

Global attention

n² time and memory cost!

Problem: it's too expensive!

- For a 224x224 images, there ~50K pixels
- Attention cost scales quadratically with the input length
 - \circ 50000² \rightarrow too large

Idea: use a smaller image size

Will reduce the input length, which makes the Transformer cheaper

Problem: loses a lot of detail

Idea: learnable downsampling of the image

- Model can learn to store important information in the features
- Similar to CNNs:

Idea: learnable downsampling

Vision Transformer

Only a single scale achievable

How to get multi-scale features?

Replace strided convolution with CNN

Credit: Neil Housby, Alexey Dosovitskiy

Hybrid CNN-Transformers

- Convolutions applied to larger resolutions
 - Linear scaling
- Attention applied to lower resolutions
 - Quadratic scaling, but okay since few pixels

Convolution: linear scaling

Non-local Networks

layer name	output size	50-layer	
•	•		
conv1	112×112	7×7 , 64, stride 2	
conv2_x	56×56	3×3 max pool, stride	
		$\begin{bmatrix} 1 \times 1, 64 \end{bmatrix}$	
		$3\times3,64$ $\times3$	
		$[1\times1,256]$	
conv3_x	28×28	[1×1, 128]	
		3×3, 128 ×4	
		$[1\times1,512]$	
conv4_x	14×14	[1×1, 256]	
		$3\times3,256$ $\times6$	
		$\lfloor 1 \times 1, 1024 \rfloor$	
conv5_x	7×7	[1×1, 512]	
		$3\times3,512\times3$	
		$\begin{bmatrix} 1 \times 1, 2048 \end{bmatrix}$	

Wang et al. 2018

Different attention scales with downsampling

Hybrid convolution-attention in speech understanding

Applying attention to larger resolutions

- Larger resolutions important for localization tasks
- Convolutions can be efficiently applied to larger resolutions
- How can attention be adapted for larger resolutions?

Core idea: make attention cheaper

- Larger resolutions have more pixels
- Quadratic complexity of attention is too expensive with many pixels
- Convolution linear in the number of pixels
- Try to make attention cost more linear

Convolution: linear transform of local window

$$y_{ij} = \sum_{a,b \in \mathcal{N}_k(i,j)} W_{i-a,j-b} x_{ab}$$

SASA: Local attention

Ramachandran et al. 2019

HaloNet: Blocked local attention

HaloNet: Blocking improves speed & accuracy

HaloNet: striding with local attention

Swin Transformer: Shifted window

Liu et al. 2021

Axial attention

Other locality patterns

(a) Transformer

(b) Sparse Transformer (strided)

Changing attention form

$$\operatorname{softmax}\left(QK^{T}\right)V$$

Changing attention form

$$\operatorname{softmax}\left(QK^{T}\right)V$$

Drop the softmax

$$(QK^T)V$$

Changing attention form

$$\operatorname{softmax}\left(QK^{T}\right)V$$

Drop the softmax

Change order of computation

Useful when length is much larger than channels

$$\frac{(QK^T)V}{Q(K^TV)}$$

Lot of ideas to try out!

Tay et al. 2020. Efficient Transformers: A Survey.

Positional information in attention affects properties

Attention needs positional information

Absolute coordinate system does not encode translational equivariance

1	2	3	1	2	3
4	5	6	4	5	6
7	8	9	7	8	9

Relative geometry encodes translational equivariance

-1, -1	-1, 0	-1, 1
0, -1	0, 0	0, 1
1, -1	1, 0	1, 1

Relative geometry encodes translational equivariance

-1, -1	-1, 0	-1, 1
0, -1	0, 0	0, 1
1, -1	1, 0	1, 1

$$y_{ij} = \sum_{a,b \in \mathcal{N}} \mathtt{softmax}_{ab} \left(q_{ij}^{ op} k_{ab} + \boxed{q_{ij}^{ op} r_{a-i,b-j}} \right) v_{ab}$$

Bello et al. 2019 Ramachandran et al. 2019

Attention can act like convolutions through relative geometry

Relative geometry improves performance

Positional Encoding Type	FLOPS (B)	Params (M)	Top-1 Acc. (%)	
none	6.9	18.0	77.6	
absolute	6.9	18.0	78.2	
relative	7.0	18.0	80.2	

What about starting from ResNets, not Transformers?

Block type

Transformer ResNet

Block type

Transformer

ResNet

Categorizing the types of attention backbones

- Various ways to categorize a particular attention backbone
- Not comprehensive, but a good starting point

Axes: operational purity

Hybrid conv-attention Fully attentional Fully convolutional

Axes: attention form

Tay et al. 2020. Efficient Transformers: A Survey.

Axes: number of scales

Single-scale Multi-scale

Axes: geometry

Axes: block type

Transformer ResNet

Recap

- Many ways of adding attention to vision backbones
- One of the biggest challenges is the quadratic complexity of attention
- Numerous strategies developed to tackle this challenge

Survey of self-attention applications in Computer Vision

Transformers for Object Detection

DETR: End-to-End Object Detection with Transformers

seq2seq

Sequence to Sequence Learning with Neural Networks

seq2seq

Transformer

Vaswani et al 2017

Transformer

- Machine Translation
- 2. Language Modeling
- 3. Image Generation
- 4. Image Captioning
- 5. Multimodal
- 6.

Vaswani et al 2017

DETR

DETR

Model	GFLOPS/FPS	#params	AP	AP ₅₀	AP ₇₅	AP_S	AP_{M}	$ m AP_L$
Faster RCNN-DC5 Faster RCNN-FPN Faster RCNN-R101-FPN	320/16 $180/26$ $246/20$	166M 42M 60M		60.5 61.0 62.5	76 1000 0000	24.2	43.5	52.0
Faster RCNN-DC5+ Faster RCNN-FPN+ Faster RCNN-R101-FPN+	320/16 $180/26$ $246/20$	166M 42M 60M	42.0	61.4 62.1 63.9	45.5	26.6	45.4	
DETR DETR-DC5 DETR-R101 DETR-DC5-R101	86/28 $187/12$ $152/20$ $253/10$	41M 41M 60M 60M	$43.3 \\ 43.5$	62.4 63.1 63.8 64.7	45.9 46.4	22.5 21.9	47.3 48.0	61.1 61.8

DETR

DETR can be modified to perform panoptic segmentation

DETR can be modified to perform panoptic segmentation

DETR Inference Code is vastly simpler

DETR Inference Code is vastly simpler

```
import torch
     from torch import nn
     from torchvision.models import resnet50
     class DETR(nn.Module):
         def __init__(self, num_classes, hidden_dim, nheads,
 7
                      num_encoder_layers, num_decoder_layers):
 9
             super().__init__()
             # We take only convolutional layers from ResNet-50 model
10
             self.backbone = nn.Sequential(*list(resnet50(pretrained=True).children())[:-2])
11
             self.conv = nn.Conv2d(2048, hidden_dim, 1)
12
             self.transformer = nn.Transformer(hidden_dim, nheads,
13
                                                num_encoder_layers, num_decoder_layers)
14
15
             self.linear_class = nn.Linear(hidden_dim, num_classes + 1)
             self.linear_bbox = nn.Linear(hidden_dim, 4)
16
             self.querv_pos = nn.Parameter(torch.rand(100, hidden_dim))
17
             self.row_embed = nn.Parameter(torch.rand(50, hidden_dim // 2))
18
19
             self.col_embed = nn.Parameter(torch.rand(50, hidden_dim // 2))
20
         def forward(self, inputs):
21
             x = self.backbone(inputs)
22
             h = self.conv(x)
23
             H.W = h.shape[-2:]
24
             pos = torch.cat([
25
                 self.col_embed[:W].unsqueeze(0).repeat(H, 1, 1),
26
                 self.row_embed[:H].unsqueeze(1).repeat(1, W, 1),
27
             ], dim=-1).flatten(0, 1).unsqueeze(1)
28
             h = self.transformer(pos + h.flatten(2).permute(2, 0, 1),
29
                                  self.query_pos.unsqueeze(1))
30
             return self.linear_class(h), self.linear_bbox(h).sigmoid()
31
32
     detr = DETR(num_classes=91, hidden_dim=256, nheads=8, num_encoder_layers=6, num_decoder_layers=6)
     detr.eval()
34
     inputs = torch.randn(1, 3, 800, 1200)
     logits, bboxes = detr(inputs)
```

Transformers for Semantic Segmentation

Segmentation Transformer (SETR)

SETR

SETR

SETR

Zheng et al 2020

Transformers for Self-Supervised Learning

Caron et al 2020

Method	Arch.	Param.	im/s	Linear	k-NN
Supervised	RN50	23	1237	79.3	79.3
SCLR [12]	RN50	23	1237	69.1	60.7
MoCov2 [15]	RN50	23	1237	71.1	61.9
InfoMin [67]	RN50	23	1237	73.0	65.3
BarlowT [81]	RN50	23	1237	73.2	66.0
OBoW [27]	RN50	23	1237	73.8	61.9
BYOL [30]	RN50	23	1237	74.4	64.8
DCv2 [10]	RN50	23	1237	75.2	67.1
SwAV [10]	RN50	23	1237	75.3	65.7
DINO	RN50	23	1237	75.3	67.5
Supervised	ViT-S	21	1007	79.8	79.8
BYOL* [30]	ViT-S	21	1007	71.4	66.6
MoCov2* [15]	ViT-S	21	1007	72.7	64.4
SwAV* [10]	ViT-S	21	1007	73.5	66.3
DINO	ViT-S	21	1007	77.0	74.5
Comparison act	ross architectures				
SCLR [12]	RN50w4	375	117	76.8	69.3
SwAV [10]	RN50w2	93	384	77.3	67.3
BYOL [30]	RN50w2	93	384	77.4	_
DINO	ViT-B/16	85	312	78.2	76.1
SwAV [10]	RN50w5	586	76	78.5	67.1
BYOL [30]	RN50w4	375	117	78.6	_
BYOL [30]	RN200w2	250	123	79.6	73.9
DINO	ViT-S/8	21	180	79.7	78.3
SCLRv2 [13]	RN152w3+SK	794	46	79.8	73.1
DINO	ViT-B/8	85	63	80.1	77.4

Caron et al 2020

Query

DINO

96.4%

AVERAGE PRECISION

Multigrain architecture

90.7%

AVERAGE PRECISION

Supervised ViT

89%

AVERAGE PRECISION

Transformers for Multi-Modal Learning

CLIP

CLIP

Radford et al 2021

CLIP

Radford et al 2021

Multimodal DETR (M-DETR)

Kamath et al 2021

M-DETR

Multi-Scale Features in Transformers

(a) Decayley ImageNet 1V trained models									
(a) Regular ImageNet-1K trained models									
method	ımage	#param.	FLOPs	throughput					
	BIZE	"Purum	12015	(image / s)	top-1 acc.				
RegNetY-4G [47]	224 ²	21M	4.0G	1156.7	80.0				
RegNetY-8G [47]	224^{2}	39M	8.0G	591.6	81.7				
RegNetY-16G [47]	224 ²	84M	16.0G	334.7	82.9				
EffNet-B3 [57]	300^{2}	12M	1.8G	732.1	81.6				
EffNet-B4 [57]	380^{2}	19M	4.2G	349.4	82.9				
EffNet-B5 [57]	456 ²	30M	9.9G	169.1	83.6				
EffNet-B6 [57]	528 ²	43M	19.0G	96.9	84.0				
EffNet-B7 [57]	600^{2}	66M	37.0G	55.1	84.3				
ViT-B/16 [19]	384 ²	86M	55.4G	85.9	77.9				
ViT-L/16 [19]	384 ²	307M	190.7G	27.3	76.5				
DeiT-S [60]	224 ²	22M	4.6G	940.4	79.8				
DeiT-B [60]	224 ²	86M	17.5G	292.3	81.8				
DeiT-B [60]	384 ²	86M	55.4G	85.9	83.1				
Swin-T	224 ²	29M	4.5G	755.2	81.3				
Swin-S	224^{2}	50M	8.7G	436.9	83.0				
Swin-B	224^{2}	88M	15.4G	278.1	83.3				
Swin-B	384 ²	88M	47.0G	84.7	84.2				
(b) ImageNet-22K pre-trained models									
method	image	#param.	EI ODo	throughput	ImageNet				
meulou	size #param.		FLOFS	(image / s)	top-1 acc.				
R-101x3 [37]	384 ²	388M	204.6G	-	84.4				
R-152x4 [37]	480^{2}	937M	840.5G	-	85.4				
ViT-B/16 [19]	384^{2}	86M	55.4G	85.9	84.0				
ViT-L/16 [19]	384 ²	307M	190.7G	27.3	85.2				
Swin-B	224 ²	88M	15.4G	278.1	85.2				
Swin-B	384 ²	88M	47.0G	84.7	86.0				
Swin-L	384 ²	197M	103.9G	42.1	86.4				

(a) Various frameworks										
Method Backbone					#pa	aram.	FLOPs	FPS		
Casca		R-5	_	46.3	64.3	50.5	-	2M	739G	18.0
Mask R-			Swin-T		69.3	54.9	8	6M	745G	15.3
ATSS		R-5	R-50		61.9	47.0	3	2M	205G	28.3
		Swin-T		47.2	66.5	51.3	3	6M	215G	22.3
RepPointsV2		R-50		46.5	64.6	50.3	50.3 4		274G	13.6
		Swin	Swin-T		68.5	54.2	4	5M	283G	12.0
Spars	Sparse R-5		0	44.5	63.4	48.2	10)6M	166G	21.0
R-CNN		Swin-T		47.9	67.3	52.3	11	l0M	172G	18.4
(b)	(b) Various backbones w. Cascade Mask R-CNN									
AP ^{box} AP ^{box} ₅₀ AP ^{box} ₇₅ AP ^{mask} AP ^{mask} ₇₅ AP ^{mask} ₇₅ paramFLOPs FPS										
DeiT-S [†]	48.0		51.				1.3	80M	er and the second and the second	
R50	46.3	64.3	50.:	5 40.	1 61	.7 43	3.4	82M	739G	18.0
Swin-T	50.5	69.3	54.9	9 43.	7 66	.6 47	7.1	86M	745G	15.3
X101-32	48.1	66.5	52.4	4 41.	6 63	.9 45	5.2	101N	1 819G	12.8
Swin-S	51.8	70.4	56.	3 44.	7 67	.9 48	3.5	107N	1 838G	12.0
X101-64	48.3	66.4	52	3 41.	7 64	.0 45	5.1	140N	1 972G	10.4
Swin-B	51.9	70.9	56.	5 45.	0 68	.4 48	3.7	145N	1 982G	11.6

Liu et al 2021

Transformers: Data and Model Regularization

Transformers scale well with data

DeiT (Data-Efficient Image Transformer)

Data-Augmentation and Distillation are powerful for limited data settings

Touvron et al 2020

BoTNet: Bottleneck Transformers for Visual Recognition

CoatNet: Marrying Convolutions and Attention for all Data Sizes

Dai et al 2021

HaloNet: Scaling Local Self-Attention Models for Vision

Model	Parameters (Millions)	Pretraining Image Size (Pixels)	Pretraining Step Time (32 per core)	Finetuning Image Size	Finetuning Top-1 Accuracy (%)	Inference Speed img/sec/core	
H4 (base 128)	85	256	377 ms	384/512	85.6/85.8	121.3/48.6	
H4 (base 128, 4×4 patch)	85	256	366 ms	384/512	85.4/85.4	125.7/56.5	
H4 (base 128, Conv-12)	87	256	213 ms	384/512	85.5/85.8	257.6/120.2	
ViT-L/16	300	224	445 ms	384/512	85.2/85.3	74.6/27.4	
BiT-M	928	224	1021 ms	384	85.4	54.2	

Plenty of work in the field on hybrid models (ConViT, LeViT, CMT,)

Transformers for Video Recognition

Figure 2: Uniform frame sampling: We simply sample n_t frames, and embed each 2D frame independently following ViT [15].

Arnab et al 2021

(a) Kinetics 400					etics 60	00		(d) Epic Kitchens 100 Top 1 accuracy			
Method	Top 1	Top 5	Views	Method	Top 1	Top 5	Views	Method	Action	Verb	Nour
blVNet [16]	73.5	91.2	_	AttentionNAS [73]	79.8	94.4 95.6	_	TSN [69]	33.2 35.3	60.2 65.9	46.0 45.4
STM [30]	73.7	91.6	_	LGD-3D R101 [48]	81.5		- 10 × 2	TRN [83]			47.2
TEA [39]	76.1	92.5	10×3	SlowFast R101-NL [18]	81.8	95.1	10×3	TBN [33]	36.7	66.0	
TSM-ResNeXt-101 [40]	76.3	_	_	X3D-XL [17]	81.9	95.5	10×3	TSM [40]	38.3	67.9	49.0
I3D NL [72]	77.7	93.3	10×3	TimeSformer-HR [2]	82.4	96.0	- 1 × 2	SlowFast [18]	38.5	65.6	50.0
CorrNet-101 [67]	79.2	_	10×3	ViViT-L/16x2 ViViT-L/16x2 320	82.5 83.0	95.6 95.7	4×3 4×3	ViViT-L/16x2 Fact. encoder	44.0	66.4	56.8
ip-CSN-152 [63]	79.2	93.8	10×3	19 (1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1	XIII MANAGARA	100000000000000000000000000000000000000	13	3			
LGD-3D R101 [48]	79.4	94.4	-	ViViT-L/16x2 (JFT)	84.3	96.2	4×3	(e) Something-So	mething	1 1/2	
SlowFast R101-NL [18]	79.8	93.9	10×3	ViViT-H/16x2 (JFT) 85		96.5	4×3	(c) Something-Sc	meding v2		
X3D-XXL [17]	80.4	94.6	10×3					Method	Top	1 T	op 5
TimeSformer-L [2]	80.7	94.7	1×3	(c) Moments in Time				TRN [83]	48.8	8 7	77.6
ViViT-L/16x2	80.6	94.7	4×3		Te	op 1	Top 5	SlowFast [17, 77]	61.		_
ViViT-L/16x2 320	81.3	94.7	4×3	TONI [(O)				TimeSformer-HR [2]	62.:		_
16.1.1.1.1.1.1				TSN [69]		5.3	50.1	TSM [40]	63.4	4 8	38.5
Methods with large-scale pr	10000000 10000 10000	A CONTRACTOR STATE OF		TRN [83]		8.3	53.4	STM [30]	64.2	2 8	39.8
ip-CSN-152 [63] (IG [41])	82.5	95.3	10×3	I3D [6]		9.5	56.1	TEA [39]	65.	1	_
ViViT-L/16x2 (JFT)	82.8	95.5	4×3	blVNet [16]		1.4	59.3	blVNet [16]	65.2	2 9	00.3
ViViT-L/16x2 320 (JFT)	83.5	95.5	4×3	AssembleNet-101 [5	01] 3	4.3	62.7	-	<i>(-</i>	4 0	00.0
ViViT-H/16x2 (JFT)	84.8	95.8	4×3	ViViT-L/16x2		8.0	64.9	ViViT-L/16x2 Fact. encode	er 65. 4	4 8	89.8

Arnab et al 2021

Takeaways for practitioners

 Pure attention models require a lot of data OR data-augmentations and regularization for ~SoTA performance

 Hybrid and (or) multi-scale models perform best (efficient for the same high accuracy) across all data regimes

Huge promise for multimodal (combining with language)

Good Resource: https://github.com/rwightman/pytorch-image-models