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Objective:
- Applications of Random Matrix Theory (RMT) in Machine Learning.
- Proof techniques in RMT

Structure:

1. Motivating Questions and Building Blocks, Fabian Pedregosa

2. Introduction to Random Matrix Theory, Courtney Paquette

3. Analysis of Numerical Algorithms, Tom Trogdon

4. The Mystery of Generalization: Why Does Deep Learning Work?, Jeffrey Pennington

https://random-matrix-learning.github. io



What is a Random Matrix?
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Example

Realization of a random matrix:

1.066 0.908 1.026  —-0.294 0.879
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Goal of Random Matrix Theory is to understand their

- eigenvalues - norms - singular vectors

- eigenvectors - singular values © 2



Where do Random Matrices
Come From?



1928: Eigenvalues of Normal Covariance Matrices

THE GENERALISED PRODUCT MOMENT DISTRIBUTION
IN SAMPLES FROM A NORMAL MULTIVARIATE POPU-
LATION.

By JOHN WISHART, M.A., B.Sc. Statistical Department, Rothamsted
Experimental Station.
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dom Symmetric Matrices

ANNALS OF MATHEMATICS
Vol. 62, No. 3, November, 1955
Printed in U.S.A.

CHARACTERISTIC VECTORS OF BORDERED MATRICES
WITH INFINITE DIMENSIONS

By EvGene P. WiGNER
(Received April 18, 1955)

Energy levels of heavy nuclei,
compared with the random

i G - matrix theory prediction.
y Source: [Rosenzweig and Porter,
Hf, Ta,W, Re, Os, Ir  (odd) 1960]
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Model for high-dimensional phenomena

- Number Theory [Montgomery, 1973, il F iy
Keating, 1993]. 8 [y s
- Graph Theory [Erdos and Rényi, 1960]. e // \\
- Finance [Bouchaud and Potters, 2009]. / \\\
- Wireless communication [Tulino et al,, b W/ e
2004]
* Machine Learning ... Distribution function of gaps between eigenvalues compared

with histogram of gaps between ¢ zeros. Source: [Odlyzko, 1987]



Random Matrices in Machine Learning: Loss Landscape

Spin Glass model of the Loss Landscape
Early: [Amit et al., 1985, Gardner and Derrida, 1988, Dotsenko, 1995]

Late: [pauphin et al, 2014, Sagun et al,, 2014, Choromanska et al,, 2015, Baity-Jesi et al, 2018]

125

100
Lambda nhidden
. 75- 25 . \“ 25
S 50 5 HH 50
3 B 00 3 I “ W00
50 250 I 250
500 o 1500
2 | L ‘
I i
0
-16 -15 1.4 -1.3
loss loss

Loss study through spin-glass model. Scaled test losses for the spin-glass (left) and the neural
network (right). Source: Choromanska et al. [2015] The Loss Surfaces of Multilayer Networks.



New methods and software’?3 to compute
Hessian eigenvalues of large models
[Ghorbani et al,, 2019, Yao et al,, 2020,
Papyan, 2020]

"https://github.com/amirgholami/PyHessian
’ https://github.com/google/spectral-density/
> https://github.com/deep-lab/DeepnetHessian
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om Matrices in Machine Learning:

New methods and software’?3 to compute
Hessian eigenvalues of large models
[Ghorbani et al,, 2019, Yao et al., 2020,
Papyan, 2020]

" https://github.com/amirgholami/PyHessian
2 https://github.com/google/spectral-density/
3 https://github.com/deep-lab/DeepnetHessian

RMT model for the Hessian still an open
problem [Liao and Mahoney, 2021,
Baskerville et al., 2021] ...

Loss Landscape
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Random Matrices in Machine Learning: Numerical Algorithms

Analyze algorithms with random data.

0 Simplex [Borgwardt, 1987, Smale, 1983, Spielman
and Teng, 2004, Vershynin, 2009] etc.

- Conjugate Gradient [Deift and Trogdon, 2017,
Paquette and Trogdon, 2020]

- Acceleration [Pedregosa and Scieur, 2020,
Lacotte and Pilanci, 2020]

Suboptimality

—&— worst-case —&— average-case

lterations



om Matrices in Machine Learning: Numerical Algorithms

Analyze algorithms with random data.

—&— worst-case —&— average-case

0 Simplex [Borgwardt, 1987, Smale, 1983, Spielman
and Teng, 2004, Vershynin, 2009] etc.

- Conjugate Gradient [Deift and Trogdon, 2017,
Paquette and Trogdon, 2020]

Suboptimality

- Acceleration [Pedregosa and Scieur, 2020,
Lacotte and Pilanci, 2020]
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Topic of Part 3 of this tutorial



m Matrices in Machine Learning: Generalization
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As a model for generalization [Hastie et al, 2019,
Mei and Montanari, 2019, Adlam and Pennington, 2020,
Liao et al, 2020]
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Random Matrices can be used to model the double
descent generalization curve. Source: [Mei and Montanari,
2019] The generalization error of random features regression:

Precise asymptotics and double descent curve



m Matrices in Machine Learning: Generalization

As a model for generalization [Hastie et al, 2019,
Mei and Montanari, 2019, Adlam and Pennington, 2020,
Liao et al, 2020]

Part 4 of this tutorial

o
©

i

e
o

o
~

—— logy(Y) = 3
—logy(
= Loz (A)

g
o

Test error
o
@

o
s

R

o
w

o
1S

o

o

Random Matrices can be used to model the double
descent generalization curve. Source: [Mei and Montanari,
2019] The generalization error of random features regression:

Precise asymptotics and double descent curve



Building Blocks

Classical Random Matrix
Ensembles
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Motivation: Model Hamiltonian
heavy nuclei
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Gaussian Orthogonal Ensemble (GOE)

Motivation: Model Hamiltonian
heavy nuclei

- Rotational invariant

for any fixed orthogonal matrix O,

law

AZ0'A0.

- Symmetric matrix.

- Independence

Entries A, i < j are independent.



Gaussian Orthogonal Ensemble (GOE)

- real n x n matrix
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Gaussian Orthogonal Ensemble (GOE)

- real n x n matrix
- N'(0,1) above diagonal
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Gaussian Orthogonal Ensemble (GOE)

- real n x n matrix
- N'(0,1) above diagonal
- Symmetric
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Gaussian Orthogonal Ensemble (GOE)

- real n x n matrix

- N'(0,1) above diagonal
- Symmetric

- N(0,2) diagonal
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Eigenvalues of GOE

n=100

Python pseudocode

o
+

import numpy as np
import matplotlib.pyplot as plt

density

-~
N

A = np.random.randn(n, n)
GOE = (A+A.T)/np.sqrt(2+n)

eig = np.linalg.eigvals(GOE) C)() y T T
plt.hist(eig) _2 O 2

eigenvalues
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Eigenvalues of GOE
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J
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Eigenvalues of GOE
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Eigenvalues of GOE

n=10000
Python pseudocode o

import numpy as np
import matplotlib.pyplot as plt

0.21

density

A = np.random.randn(n, n)
GOE = (A+A.T)/np.sqrt(2+n)

eig = np.linalg.eigvals(GOE) 00k ‘
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Empirical Spectral Distribution (ESD)

ESD of matrix A, = p.d.f. of an eigenvalue chosen uniformly at random

def 1
MESD—Mn—e Z (A

density
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Wigner Semicircle Law

JLEsp converges as n — oo to the semicircular distribution,

density

1
psc(0) B — /(4 —x2); dx.
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£
021 / N\ Hsc
I )\
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0.0 ‘ :
-2 0 2
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To know more: [Tao, 2012, Bai and Silverstein, 2010].
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Wishart ensemble

X =random (d x n) matrix with entries i.i.d. A'(0,1)
Wishart (d x d) matrix, W = XTXT

Remarks

- W is symmetric, positive semi-definite



Wishart ensemble

X =random (d x n) matrix with entries i.i.d. A'(0,1)
Wishart (d x d) matrix, W = XTXT

Remarks
- W is symmetric, positive semi-definite

- Same non-zero eigenvalues than 1X'X



Wishart ensemble

X =random (d x n) matrix with entries i.i.d. A'(0,1)
Wishart (d x d) matrix, W = £

Remarks
- W is symmetric, positive semi-definite
- Same non-zero eigenvalues than %XTX

T . .
- 1X'X is Hessian of the least squares problem - [[Xw — y/|?



Wishart ensemble

X =random (d x n) matrix with entries i.i.d. A'(0,1)
Wishart (d x d) matrix, W = £

Remarks
- W is symmetric, positive semi-definite
- Same non-zero eigenvalues than 1X'X
- 1X"X is Hessian of the least squares problem 5= ||Xw — y||?

- Parameter r = ¢



Wishart ensemble

n=100
Python pseudocode 1.01

import numpy as np
import matplotlib.pyplot as plt

= 1/2 # for example ‘
np.random.randn(n * r, n)

r
X
W = np.dot(X, X.T) / n LISL | (4, _

eig = np.linalg.eigvals(w) C) 1 2
plt.hist(eig) eigenvalues



Wishart ensemble

Python pseudocode

import numpy as np
import matplotlib.pyplot as plt

= 1/2 # for example
np.random.randn(n * r, n)

r
X =
W = np.dot(X, X.T) / n

eig = np.linalg.eigvals(Ww)
plt.hist(eig)
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Wishart ensemble

n=1000

Python pseudocode

import numpy as np
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Wishart ensemble
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Wishart ensemble

Python pseudocode

import numpy as np
import matplotlib.pyplot as plt

= 1/2 # for example
np.random.randn(n * r, n)

r
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eig = np.linalg.eigvals(Ww)
plt.hist(eig)

density
O
U

0.0

n=5000

2
eigenvalues



Wishart ensemble

n=10000

Python pseudocode

import numpy as np
import matplotlib.pyplot as plt

= 1/2 # for example
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Limit of Wishart matrices

Marchenko-Pastur (MP) law [Marcenko and Pastur, 1967]
As n,d — oo, % — I, uesp converges to the Marchenko-Pastur distribution:

def N VAT =X)(Xx= A
Hpp(X) = (1- %)A()O(X) + \/( 2”I)’(X )1X6[A7'A7] e
N— "

nonzero if r > 1
with A~ = (1= V)2, At = (1+ 1)

> \
§O~5 N Marchenko-Pastur
© S S
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_d
The r = 7 parameter

- r<1 = d<n = Wis product of two fat matrices.
cr>1 = d>n = Wis product of two thin matrices (rank-deficient).

10 r=0.2
ey
@ —
@ 0.5 pp (%) E (1 - D)+00(x) + e 2:,),5( ! )1X6[)\*.)\*] dx.
© nonzero if r > 1 /
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The r = ¢ parameter

- r<1 = d<n = Wis product of two fat matrices.
cr>1 = d>n = Wis product of two thin matrices (rank-deficient).

. r=0.5
Py
= = -
- 0.5 pup(¥) & (1 - },)vo‘o(x)+¢(A ;TXZE(X*A )1xe[/\ A dx.
g 7
nonzero if r > 1
0.0 O)‘ = 2

eigenvalues



The r = ¢ parameter

- r<1 = d<n = Wis product of two fat matrices.
cr>1 = d>n = Wis product of two thin matrices (rank-deficient).

density

r=0.9

o\ 2

eigenvalues

Fewp (X) &ef (1= ;)A()‘O(x) + \/(/\A —X)(X = A7)

— 2mr X
nonzero if r > 1

1xc[)\7.)\-] dx.



The r = ¢ parameter

- r<1 = d<n = Wis product of two fat matrices.
cr>1 = d>n = Wis product of two thin matrices (rank-deficient).

density
NO

r=1.0

o\ 2

eigenvalues

Fewp (X) &f (11— ;)A()‘O(x) 4 \/(/\A —X)(X = A7)

— 2mr X
nonzero if r > 1

1xc[)\7.)\-] dx.



The r = ¢ parameter

- r<1 = d<n = Wis product of two fat matrices.
cr>1 = d>n = Wis product of two thin matrices (rank-deficient).

0314 =2.0
202 - -
z () 2 (1 = 4500 + YA ZOC= AT,
% O 1 ] nonzero if r > 1 o |
0000 25 5.0

eigenvalues



The r = ¢ parameter

- r<1 = d<n = Wis product of two fat matrices.
- r>1 = d>n = Wis product of two thin matrices (rank-deficient).

010, 4 r=5.0
£ AT A~
£ 0.05] pr2 2 (1= )0 + L4 DA .
© J(—\\\ nonzero if r > 1

000 =35 10

eigenvalues



Universality

Covariance matrices W = %XXT
What happens if we replace the A/(0,1) with a different distribution?

© X~ N(0,7)
* Xjj ~ Rademacher Pr(Xjj = —1) = Pr(X; = 1) = 5

19
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* Xjj ~ Rademacher Pr(X; = —1)

=Pr(X; =1) = 1
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Universality

Covariance matrices W = %XXT
What happens if we replace the N(0, 1) with a different distribution?
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Universality

Universality

- Statistics only mildly depend on the lower order moments of distribution of the
entries

20



Universality

Universality

- Statistics only mildly depend on the lower order moments of distribution of the
entries

Example: Marchenko-Pastur [Marcenko and Pastur, 1967]
Let X be a d x n random matrix with i.i.d. entries that verifies

EX;] =0, E]=1 E[X]< oo

Universality: As n,d — oo with % — 1, the ESD of W = XTXT converges to
Marchenko-Pastur(r)

20



Other matrix ensembles

- Ginibre. Let G, be n x n matrix of i.i.d. N(0,1), (bilinear games [Domingo-Enrich et al., 2020])
(Circle law) ESD of G,/+v/n — Unif(disk).
- Uniform probability measure on orthogonal matrices. V ~ Unif(O(n)),

ESD of V — Unif(S").
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Stieltjes Transform



Maximum entropy principle

A disordered (real world) system will be random in all ways that are
not explicitly prevented.

Conversely, a matrix is interesting only in those ways it fails to look
like a random matrix.

Notes of Elliot Paquette and the thesis, A random matrix framework for large

dimensional machine learning and neural networks by Zhenyu Liao



Example MNIST

MNIST M (60, 000 x 28 x 28), form sample covariance matrix, S = Mm"

Does S look like a random matrix?



Example MNIST

MNIST M (60, 000 x 28 x 28), form sample covariance matrix, S = Mm"

Does S look like a random matrix?
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Observation 1: 1 giant eigenvalue, M has non-zero mean



Example MNIST

Remove large eigenvalue
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Example MNIST

Observation 2: There is a bulk component

fruse corvespond b
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- Fit bulk with Marchenko-Pastur(1) to correspond to point mass
- Large eigenvalue correspond to interesting outliers
- May be "hidden” (weak) outliers in the bulk eigenvalues



Method 1: Stieltjes transform

Stieltjes transform

M) = [ 7wl

zeC, $(z)>0, pisP-measureonR

1 .
lim =S (m,(x + 1
E'faﬂ\f( u( +E)):M



Method 1: Stieltjes transform

Stieltjes transform

@) = [ 5 ()

rt—2
zeC, $(z)>0, pisP-measureonR

Theorem (Stieltjes inversion)

1 .
lim =S (m,(x + 1
E'faﬂ\f( u( +E)):H

Example: p is law of Unif([—1,1])
Stieltjes transform:

1 _
@ =3 [ <=3 [ L~ g (L22)

t—z 2/ 4t—2 2 —1-z
1 i <1
Inversion im S (1 1=z | 0, if 1
m — 10, .=
dor \2 S\T1_2 B o >
* X =1



Empirical spectral distribution and Stieltjes

,I n
ESD of At pin = Z Sx,(4)

=1

Stieltjes transform of ESD

If for each z € C, $(z) > 0, and

My, (2) o mu(2) = pn —



Resolvent
def —1
Q(z) = Resolvent of A= (A — zly)
Remarks
For nice random matrices (GOE, Wishart, sample covariance),
Resolvent of A &~ ma(2)ly

where m, is the Stieltjes transform of A. That is, for any unit vector u
independent of A,

uT(A—zlg) 'u= ma(z)  (weak sense)

*This gives not only eigenvalues but also eigenvectors



Marchenko-Pastur and Stieltjes

Lemma:
Suppose x € RP has i.i.d. entries of mean zero, unit variance. Then

x'Ax —trA — 0

Wishart: W= 1xX", XeRI", d/n—re (00)

| -
X=|X; X, --- X,| = Resolventof W= Q,(z :( Zxx —zld>

Question: What is the Stieltjes transform of Wishart W?

Suppose 3 Q(z) € C™? sit. 1tr(Qn(2) — Q(2)) — 0 (Stieltjes of MP = tr(Q(2)))

Fact:  |itr(Qq(2)(Q(2)~" +215)Q(2)) — 1 Zx, 7)Qu(2)x;| — 0



Marchenko-Pastur and Stieltjes

Linear algebra to construct self-consistent equation for tr(Qn(2)):
Remove 1 column and 1 row: fo) %)
/_/%

,] n
Qn = (an,-x(-T—zld> = ( xix] + Zxx —zld)
e

ﬂ4QnMMQm

= -
1+ n=xQ"x

(Sherman-Morrison)



Marchenko-Pastur and Stieltjes

Linear algebra to construct self-consistent equation for tr(Qn(2)):
Remove 1 column and 1 row: fo) %)

—_—~
1 & - 1 1 & -
0 - (nzx,-xr—z:d) = (Lo s 1S -,
i=1 =2

ﬂ4QnMMQm

= OE,” — (Sherman-Morrison)
14+ n- WXTQ
057), Xy independent = x; QQn tr(QQ“)) and x, Qn = (Qg))
d~'x[QQwx1 = *Wtrmon”) ~ *Rr(oon)

Tn=1tr(@P) ~ T+n-Ttr(Qn)



Marchenko-Pastur and Stieltjes

Linear algebra to construct self-consistent equation for tr(Qn(2)):
Remove 1 column and 1 row: fo) %)

—_—~
1 & - 1 1 & -
0 - (nzx,-xr—z:d) = (Lo s 1S -,
i=1 =2

ﬂ4QnMMQm

= Qg) — (Sherman-Morrison)
T+ n— WXTQ
Q", x; independent = x7QQ{"x, = tr(QQY") and xTQ"x, = tr(Q{")

d~'tr(@a’) __ d~'tr(Qq,

WXW QQyx; = 1+n—r1(tr(Q£1))) ~ 1+n*r1(tr(0n))

. d7'tr(Qaq,
LYy~ A 1
1 ! = Q '+zly=

—
B 14+ ﬂ_qtr(on)
d7tr(Qu(Q" +710)Q) ~ Foes

1 =1
o= (- @) "



Marchenko-Pastur and Stieltjes

- B o = e 1 -
Stieltjes of Wy = mw, (2) = d ™ 'tr(Q,) ~ d~ 'tr(Q) = ( z+ Trrdoran) d*tr(Qn))

1



Marchenko-Pastur and Stieltjes

. B o = e 1 -
Stieltjes of Wy = mw, (2) = d ™ 'tr(Q,) ~ d~ 'tr(Q) = ( Z+ Trrdta) d*Wtr(Qn))
Fixed point equation for trace (r = lim 9):

1
mw,(2) = ————— +¢(n,2), e(n,z) —— 0
—Z+ W n—o0o
Fixed point for Marchenko-Pastur, MP:
1
mup(2) = ——, Note: m(z) ~ 5 asz — oo

7
—Z + W+I’-mmp(Z)

v solve numerically V' many dist. satisfy fixed point egn.

1



Marchenko-Pastur and Stieltjes

. B o = e 1 -
Stieltjes of Wy = mw, (2) = d ™ 'tr(Q,) ~ d~ 'tr(Q) = ( z+ Trrdoran) d*tr(Qn))
Fixed point equation for trace (r = lim 9):

1
mw,(2) = ————— +¢(n,2), e(n,z) —— 0
—Z+ W n—oo
Fixed point for Marchenko-Pastur, MP:
1
Mwp(2) = ———, Note: m(z) ~ 5 asz — oo
_Z+ W+I’-mmp(Z)
v solve numerically V' many dist. satisfy fixed point egn.

Stieltjes transform of Marchenko-Pastur

1-r—z+ O+ V= 2(( = V=)

21z

I’TIMP(Z) =

1



Bulk + outliers

How do we model this?

0.10 rese (')OW(’,BPA{\(J\ h
Woys i matvin

008 ls oot a andan

0.06 Madyi K

0.04 04'{’\1 w

Bulk 4+ Outliers

2 &
Model: Marchenko-Pastur +  Spikes



Sample covariance matrices

Set-up
- Covariance matrix, C, (symmetric, positive semi-definite matrix)
- Noise matrix, Z € RY*" (mean 0, variance 1, i.i.d.)

- n'/9 < d < ndforsomed >0
xx"
- X=C"?Z Form —

- ||CJ]> < constant, independent of n



Sample covariance matrices

Set-up
- Covariance matrix, C, (symmetric, positive semi-definite matrix)
- Noise matrix, Z € RY*" (mean 0, variance 1, i.i.d.)

- n'/9 < d < ndforsomed >0
xx"
- X ="z Form —

- ||CJ]> < constant, independent of n

Stieltjes of XTXT =tr[(lg — ZXTXT)_W] ~ Im(z) +

where m(z) = (—z+ 1tr[C(lq — ﬁ?(z)c)_]])i1

SR g QORI X'x . . ]
v m(2) = Stieltjes transform == v implicit egn, solved numerically



Examples of Sample Covariances

See Colab for details
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R-Transform



Example Hessian of 2-layer Network Model

Setup
- WO e Rm*M and W@ e R™*M weight matrices, i.i.d. N(0,1)
© x € R™*M s input data and y € R™*™ targets
- g : R — R activation function

“n=ng=n=nyand ¢ = £
outputs: ¥ =WAgWVx)  residuals: e; =y; —y;

Goal: {76) = o IW2gwx) -y}

min
0:[W(W) 1w(2)]



Example Hessian of 2-layer Network Model

Setup
- WO e Rm*M and W@ e R™*M weight matrices, i.i.d. N(0,1)
© x € R™*M s input data and y € R™*™ targets
- g : R — R activation function

“nN=ng=ny=nyand ¢ =

outputs: ¥ =WAgWVx)  residuals: e; =y; —y;
1
. i — _ lw®@ My — yII2
Goal: az[ml)vw(z)] {f(e) > [[W<g (W x) — y|| }

Hessian: H = Hy + H,

ny,m

Vi Y 1N 9%
if 1) - 1)
[Holas = Z 20, 90, "4 [Hlas =7 D_Cigg 005

ij




ts of the Hessian during Training

H's Eigenvalues

Hessian: H = Hg + H;

Eigenvalue

HO's Eigenvalues HI's Eigenvalues

140

120 00

100 600

Density

o 8 & 8 8

ol
1] 0 0 &0 & 100 -015 -010 -005 000 005 010 015
Eigenvalue Eigenvalue

Question: How do you model eigenvalues of H from Hy and H¢?

Images by McGill undergraduate, Ria Stevens
16



R-Transform

Tool for writing simple formulas for densities from known densities



Free convolution of measures, js B g
If A, B two random matrices with ESD, ua and ug,

ESD of A+ B = pa B ug

provided matrix sizes large and matrices asymptotically free.
(side note: product of matrices version)




Asymptotically free matrices

Orthogonal invariance
An A random symmetric matrix is orthogonally invariance if for any
fixed orthogonal matrix O

0'A0 Y A

Multiples of the Identity
Wishart with Gaussian entries

GOE with Gaussian entries

19



Asymptotically free matrices

Suppose {A,} and {B,} are n x n random matrices. If the following

A, and B, are independent
A, is orthogonally invariant

Then A, and B, are asymptotically free and ua, B pg, = pa, +8,

Intuition: Eigenvectors of A, are completely unaligned from B,

20



Stieltjes and R-transform

R-transform is inverse of Stieltjes of m

Examples

- Buu” is Rgyyr = ﬁ
!

: RMarchenko—Pastur(r)(S) = T—sr

: Rsemicircle(s) =S

21



Calculus for spectral densities

If A and B are asymptotically free,

RMA+B = RHAEN'B - RHA(S) + R“B (S)

Remark
R-transform & Stieltjes transform < Spectral density

Example
Root + wishart = Rsemicircte + Rmup = _ S+
GOE + Wishart semicircle MP 1_sr
GOE N——

Wishart

22



ts of the Hessian during Training

H's Eigenvalues

Hessian: H = Hg + H;

Eigenvalue

HO's Eigenvalues HI's Eigenvalues

140

120 00

100 600

Density

o 8 & 8 8

ol
1] 0 0 &0 & 100 -015 -010 -005 000 005 010 015
Eigenvalue Eigenvalue

Question: How do you model eigenvalues of H from Hy and H¢?

Images by McGill undergraduate, Ria Stevens
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Model for the Hessian

nye d:eff(@) Hessian: H = Hy + H,
Modeling Assumptions
- Hy is Marchenko-Pastur
- Hg and H; are asymptotically free
“n=ng=n=nyand ¢ = &£

EPS

R-transform of H;: Ru,(s) = T egis?

R-transform of H
1 EPS

RuS) = T=55 + 7epw

24



Questions?

24
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In this section:

- Ais typically a rectangular matrix with more rows than columns
- Wis a symmetric (square) matrix
- Often W < ATA



Motivation: Average-case versus
worst-case in high dimensions



Issues with worst-case bounds in high dimensions

In some very specific cases, the high-dimensionality of a given problem provides it with enough
degrees of freedom to “conspire against” a given algorithm.



Issues with worst-case bounds in high dimensions

In some very specific cases, the high-dimensionality of a given problem provides it with enough
degrees of freedom to “conspire against” a given algorithm.

For, example, consider solving a n x n linear system Wx = b using the conjugate gradient (CG)
algorithm where

D
Ve l+t Wt
Vi T4t e !
0
W= Ve , b=1]1], 0<e<.
0
NG
_ VE Tt




Issues with worst-case bounds in high dimensions

The CG algorithm is iterative and produces approximations x, that satisfy:

Hp = g {(X —y)'W(x—y)" :y € span{b, Wb, ..., W*Hb} :
yeR"
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Issues with worst-case bounds in high dimensions

The CG algorithm is iterative and produces approximations x, that satisfy:

Hp = g {(X —y)'W(x—y)" :y € span{b, Wb, ..., W*Hb} :
yeR"

It can be shown that for the above choice of W,b,and 1< k < n
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converges!



Issues with worst-case bounds in high dimensions

The CG algorithm is iterative and produces approximations x, that satisfy:

Hp = g {(X —y)'W(x—y)" :y € span{b, Wb, ..., W*Hb} :

yeRn

It can be shown that for the above choice of W,b,and 1< k < n
1 R
b — Wxy||* = (;) but ||b — Wxy| = 0.

The residuals (or norms of the gradient) appear to diverge exponentially before the iteration finally
converges!

And as n increases, this becomes worse. And a worst-case bound needs to account for this
pathological example.



Introducing distributions

Instead, we may want to choose W and b to be random and consider
E||b — W]
If one chooses W to be distributed according to the Wishart distribution, as n — oo,

Ellb — Wxe|? = +0(1), t=r"= lim 2

n—oo d’



Introducing distributions

Instead, we may want to choose W and b to be random and consider
E|[b — Wxq|I*.
If one chooses W to be distributed according to the Wishart distribution, as n — oo,
Ellb — Wxe|? = +0(1), t=r"= lim 2

n—oo d’

But a valid important open problem is: To model optimization in a ML context, what distribution is
relevant for W?

This is an open problem. See Liao and Mahoney [2021] for work in this direction.



Main RMT tool: Matrix moments



Main linear algebra tool

Recall Cauchy’s integral formula: If fis analytic in a sufficiently large region and C is smooth,
simple, closed curve then

1 b
f) =5 [ 1)

1 !
2mi Jo 2 =2

dz.



Main linear algebra tool

Recall Cauchy’s integral formula: If fis analytic in a sufficiently large region and C is smooth,
simple, closed curve then

1 b
f) =5 [ 1)

1 !
2mi Jo 2 =2

dz.

Suppose the eigenvalues of an n x n matrix W are enclosed by C, then

W) := Uf(AU" = i /Cf(Z)(Zln -wW)dz.



Main linear algebra tool

Recall Cauchy’s integral formula: If fis analytic in a sufficiently large region and C is smooth,
simple, closed curve then

fia) = o [ 22

- d7.
2mi Jo 2 =2

Suppose the eigenvalues of an n x n matrix W are enclosed by C, then
W) = UFAU = = / @) (2l — W)~ dz.
27 Je
In particular,

1 k —
W= — [, —w)ydz
27 (zln )



Two consequences

1
“tr W = ! -
n 2mni

/zhtr (zlh — W)~ 'dz
@



Two consequences

1 ] 1 k 1
—trW" = — — | Z(z—\) dz
nr Z p= ( 1)



Two consequences

Stieltjes transform of
'y Sy



Two consequences

Stieltjes transform of
'y Sy



Two consequences

Stieltjes transform of
'y Sy

1
u' W= — /zkuT(zIﬂ — W) 'udz
2mi fo



Two consequences

Stieltjes transform of
'y Sy

uT W= - /zkuT(zIﬂ — W) ludz = s / 7' mesp(z) dz
2mi Je 2mi C N—_——
Stieltjes transform of
25 Wb,

> widx,  w = (vu)’
J



Analysis of matrix moments

A main RMT takeaway:

Matrix moments < Classical moments of ESD < Contour integrals of Stieltjes transform
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Analysis of matrix moments

A main RMT takeaway:

1

e Wt = /XkuESD(dX) ~ T/z”mESD(z) dz
R ™ Jc

If uesp = 3 22, xw) then the first ~ becomes =.



Analysis of matrix moments

A main RMT takeaway:

1

k
— [ Zm z)dz
27 J, Esp(?)

1 R~ R _
EtI‘W NAX MESD(dX)—

If ugsp is the limiting ESD then the second ~ becomes =.



Analysis of matrix moments

A main RMT takeaway:

2mi

%ter%/XkuESD(dX) = L/kaESD(Z) dz
R ©

If usp is the limiting ESD then errors are typically on the order of 1/n.



Analysis of matrix moments

A main RMT takeaway:

1

1
u'Wru ~ /Xh,u,ESD(dX) ~ T/z’*mESD(z) dz
R ©



Analysis of matrix moments

A main RMT takeaway:
1
u'Whu = /x’?uESD(dx) 2 — /z’?mESD(z) dz
R 2mi Je

If pwmsp = >, Wix ), W; = (v/u)? for eigenvectors v; then the first ~ becomes =.



Analysis of matrix moments

A main RMT takeaway:

uTW}?u;\'\,/Xh,uESD(dX) = ! /kaESD(Z) dz
R

2mi Je

If prsp is the limiting ESD then errors are typically on the order of 1/4/n.



Analysis of matrix moments

A main RMT takeaway:

u'Wru ~ /Xh,u,ESD(dX) ~ L,/zkmESD(z) dz
R 2mi Je
If a statistic, (which might be the error encountered in, or the runtime of, an algorithm) depends
strongly on these generalized moments, it may be analyzable directly using RMT.



Analysis of matrix moments

A main RMT takeaway:

1
uTWky = /RXkHESD(dX) ~ = /czkmESD(Z) dz pmsp = z;; VV[(SAI(W)

Knowles and Yin [2017
For a large class of sample covariance matrices W there exists a deterministic measure pscym with
Stieltjes transform mscnm such that

Pr (|a’(W — 210) b — (a’b)mscm(2)| > lallliblit) = O(n~")

forany D > 0, uniformly in a large subset of the complex plane.



Analysis of matrix moments

A main RMT takeaway:

UTWk’u = /]R)(’?MESD(dX) ~ % CkaESD(Z) dz UESD = 27:1 W15>\/(W)

Knowles and Yin [2017
For a large class of sample covariance matrices W there exists a deterministic measure pscym with
Stieltjes transform mscm such that

Pr(|musp(2) — Msom(2)] > t) = 0(n~°)

for any D > 0, uniformly in a large subset of the complex plane.



Resolvent estimates lead to moment estimates

1 1
u W U~ — Z MEgs Z dZ ~ — Z 3 alZ dZ = X }I vi dX
2 i ESD( ) 2 i SCl\I( ) = / SCI\I( )



Resolvent estimates lead to moment estimates

u'Wru =

1
~— | 'mesp(@)dzr — [ Fmscm(z)dz = /X”MSCM(dx)
27 Je R

2mi Je

u'P(W)u ~ / P(x) pscom (dx)



Algorithm halting times (runtimes)
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Our abstract setup to analyze algorithms is as follows. Suppose first that there is a intrinsic notion
of dimension n.
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Our abstract setup to analyze algorithms is as follows. Suppose first that there is a intrinsic notion
of dimension n.

- Let A be an iterative algorithm to solve a problem P, (e.g, an n x n linear system with gradient
descent).

- Included with the algorithm, we assume there is @ measure of error Ex(Pn; .A) at iteration k
(e.g., norm of the gradient).

- Let &€ represent a distribution from which problems P, are drawn (e.g., a random matrix and
vector for a linear system).

- The halting time is then defined as

Ta(Pn,e) = min{R : Ex(Pn; A) < e}.
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Probably the most famous, and maybe the most influential, instance of the probabilistic analysis of
an algorithm, was the analysis of the simplex algorithm developed by Dantzig [1951] for linear
programming (see also Dantzig [1990]).

For many years after its inception the simplex method had no provable complexity guarantees.
Indeed, with a fixed pivot rule, there typically exists a problem on which the simplex method takes
an exponentially large number of steps.

Despite the existence of other algorithms for linear programming with provable polynomial runtime
guarantees, the simplex method persisted as the most widely used algorithm.
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Borgwardt [1987] and, independently, Smale [1983] proved that under certain probabilistic
assumptions and under certain pivot rules, the expected runtime of the simplex algorithm is
polynomial:

ETsimplex (Pn; €) < polynomial in n.

Limited only by their statistical assumptions, these analyses demonstrated, at least conceptually,
why the simplex algorithm typically behaves well and is efficient.

The subsequent analysis by Spielman and Teng [2004] improved these analyses by providing
estimates for randomly perturbed linear programs. This analysis has since been improved, see
[Dadush and Huiberts [2020], Vershynin [2009], Deshpande and Spielman [2005]], for example.
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analysis of some optimization algorithms, one can always take issue with the underlying statistical
assumptions we make.

For any average-case analysis one hopes to continue to:

- Expand the class of distributions that can be considered.

- Increase the precision of the resulting estimates.

- Collect additional algorithms that can be analyzed with the same or similar techniques.
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We also highlight two other success stories in average-case analysis. These are of a different flavor
because randomization is introduced to algorithms to improve their performance. And
subsequently, one has a natural distribution over which to compute averages, but the problem
being solved is deterministic.

The first algorithm is the power method with randomized starting. The power method is an
algorithm to compute the dominant eigenvalue (provided it exists) of a matrix. It also also
approximates the dominant eigenvector.



’The power method

1. Xo is the initial vector, ||Xo|| = 1 and W is given.
2. Fork=1,2,...

21 Compute vy, = Wxj,_;
2.2 Compute pp = leka
2.3 Compute x, = vi,/||vil|

The iterates ug, under mild assumptions, will converge to the dominant eigenvalue of W. It is
well-known that the power method will converge at a exponential rate depending on the ratio of
the largest-to-next-largest eigenvalue (a relative spectral gap).



If W is positive semi-definite and xo is chosen randomly (xo = np. random.randn(n),
Xo < Xo/|[%o|]), then it was shown in Kuczynski and Wozniakowski [1992] that a spectral gap is not
need to get average-case error bounds of the form:

|1tk — Amax| logn
E <0.87 .
‘Amax - )\min| - k —1
[ —

Er(Pn;Power)

The power method can also be analyzed on random matrices, see Kostlan [1988], Deift and Trogdon
[2017].



Lastly, a discussion that is closer to the heart of the matter is the work of Strohmer and Vershynin
[2009] on the randomized version of the original Kaczmarz algorithm [Kaczmarz [1937]] for the
solution of overdetermined linear systems.

The Kaczmarz Algorithm ‘

1. Xo is the initial vector and A is given.
2. Fork=1,2,...

21 Select a row g; of A (add randomness here!)
bjfafx,e,1

2.2 Compute X = Xp_q — Waf



For a consistent overdetermined system Ax = b it was shown that the method satisfies

k
1

E x.—x|I? < (1= ——— [Ixo— x|

lIxe — XI| _( ;-c(ATA)) lIxo — X||

Ep(Pn;Kaczmarz)

where /{(ATA) is the condition number of A’A (to be discussed more later).



Leveraging RMT

The power of random matrix theory (RMT) is that one can ask and answer more involved questions:
- If P, is drawn randomly, then
T_A(Pn75)

is an integer-valued random variable. While it is important bound its expectation or moments,
what about its distribution as n — co?

- With the same considerations
Eh(Pn,A)

is a random variable. Can we understand its distribution?



Universality of the halting time

Universality in fully connected network with SGD

— Fully connected MNIST
—— Fully connected random
0.4} —  MNIST on convnet
MNIST on norm condition

0.0

= -2 0 T 1
Halting time fluctuations

Sagun et al. [2017] present experiments to demonstrate that the halting time Tsap(Pn; €) for a
number of neural network architectures exhibits universality. That is, after proper centering and
rescaling, the resulting statistics do not depend (in the limit) on the distribution on Pj.



Universality

A wide variety of numerical algorithms have been demonstrated (both empirically and rigorously)
to have universal halting times (i.e,, runtimes, iteration counts, etc.). The study of universality in
halting time was initiated by Pfrang et al. [2014] and broaded in Deift et al. [2014].

Universality in halting time is the statement that for a given A, and a wide class of ensembles &,
there are constants p = u(&,e,n) and o = o(€,¢,n) and e = ¢(€, n) such that

lim Pe (M < t) = FA(t).

n—oo g
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halting time was initiated by Pfrang et al. [2014] and broaded in Deift et al. [2014].

Universality in halting time is the statement that for a given A, and a wide class of ensembles &,
there are constants p = u(&,e,n) and o = o(€,¢,n) and e = ¢(€, n) such that

lim Pe (M < t) = FA(t).

n—oo g

The limiting distribution is independent of the choice for &.
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A case study: Regression




A natural first step

A natural first place to combine RMT and optimization/ML with a view toward universality is in the
study of linear regression:

arg min {ﬁ(x) = iHAX —b|’, b=Aa+ 77} .
XERN 2d

where a is the signal, n is additive noise, and

’Aisadxn matrix‘.
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A natural first step

A natural first place to combine RMT and optimization/ML with a view toward universality is in the
study of linear regression:

arg min {ﬁ(x) = iHAX —b|’, b=Aa+ 77} .
XERN 2d

where a is the signal, n is additive noise, and

’Aisadxn matrix‘.

There are, of course, many iterative algorithms to solve this problem and we focus on two:

1. the conjugate gradient algorithm (CG) [Hestenes and Steifel [1952]], and
2. the gradient descent algorithm (GD).

21



Conjugate gradient on the normal equations

The Conjugate Gradient Algorithm

1. Xo is the initial guess.

2. Setro = A'b — ATAxo, p, = ro.
3. Fork=12,...,n

Mhe1Tk—1
ri_ATApy,
3.2 SetXp = Xp_1 + Ap_1Pp_1.
33 Setry =rp_q — ap_+ATAp,_;.

Il

Rk

s

kfwr’?*{
35 Setp, =r, — br_1pp_;-

31 Compute a,_q =

34 Compute by,_q = —

22



A natural first step

Why consider CG?

23



A natural first step

Why consider CG?

CG is a highly-structured algorithm with connections to the Lanczos iteration and the theory of
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in the analysis. CG is also a method-of-choice in the broader computational mathematics
community.
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A natural first step

Why consider CG?

CG is a highly-structured algorithm with connections to the Lanczos iteration and the theory of
orthogonal polynomials. While we do not discuss many of these details, they play an important role
in the analysis. CG is also a method-of-choice in the broader computational mathematics
community.

A simplification.

Instead of considering CG on the normal equations, ATAx = ATb, we first consider a slightly simpler
problem:

CG applied to ATAx = c.

23



Scaling regions

Scaling regions show up here in the relationship between n and d in a sample covariance matrix
W:’%(Aisdxn).

d=|nr] forr>1
d=n
d=|n+cn®|for0<a<1

24



Scaling regions

Scaling regions show up here in the relationship between n and d in a sample covariance matrix
W:’%(Aisdxn).

d=|nr] forr>1
d=n
d=|n+cn®|for0<a<1

Recall that condition number of a matrix W is defined to be

) = 2W)
(W) (W)’

i.e., the ratio of the largest to the smallest singular value of W.
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Scaling regions

Scaling regions show up here in the relationship between n and d in a sample covariance matrix
W:%(Aisdxn).

Scalings of sample covariance matrices
- d = |nr| for r > 1 (well conditioned)
- d = n (ill conditioned, but still invertible)
- d=|n+cn*|for0 < a < 1(somewhere in between)

Recall that condition number of a matrix W is defined to be
a1(W)
w) =
w(W) o (W)’

i.e., the ratio of the largest to the smallest singular value of W.

Matrices with small condition numbers are said to be well conditioned while those with larger
condition numbers are said to be ill conditioned.

24



Three distinct behaviors of CG depending on scaling region
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001
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680 700 24 23 7 23
Halting time Halting time

CG with d = 520 and n = 400
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0.00 -
0

80 85
Halting time

n
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Three distinct behaviors of CG depending on scaling region

CG with d = 400 and n = 400 CG with d = 800 and n = 400

Density

700 7 23
Halting time Halting time

CG with d = 520 and n = 400

“in betwee j

0 80 85
Halting time 25



Qualitative comparison with SG

CG with d = 520 and n = 400

While the mechanisms behind these behaviors
are surely different, we see a non-trivial
histogram in each setting.

For CG on Wishart matrices, it can be shown
® & that

Halting time

(aist) T7

i T dist Xn—j—1
. L in fully network with SGD HrkH = ||C —A Aka = ,
—  Fully connected MNIST _f

—  Fully connected random j=0 Xd—j

04| —  MNIST on convnet H
MNIST on norm condition

for independent chi-distributed random
variables.
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ive comparison SGD

CG with d = 520 and n = 400

80 85
Halting time

L in fully network with SGD

— Fully connected MNIST
—  Fully connected random
041 —  MNIST on convnet
MNIST on norm condition

So, if we set
Er(Wishart; CG) = || rg||
we can analyze the halting time to see that

2 -
Tea(Wishart, ) = En1 loge™"

+0(n** TN (0, 1),

for1/2<a<.
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To the well-conditioned regime!

CG with d = 800 and n = 400

26 27 28 29 30 31
Halting time

It turns out that the errors Fx(Py; A) for iterative methods for a linear system involving A'A are
often analyzable in the well-conditioned, ill-conditioned and “in between” regimes. But the
analysis of the halting time can be much more involved because the halting time T4 (Pn, <) can tend
to infinity with n!



To the well-conditioned regime!

CG with d = 800 and n = 400

27 28
Halting time

So, we, for the time being, let d = |nr| forr > 1.



’The Gradient Descent Algorithm ‘

1. Xo is the initial vector.
2. Fork=1,2,...

21 Select step size v
2.2 Compute X, = Xp_1 — YRV L(XR_1)
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28



’The Gradient Descent Algorithm ‘

1. Xo is the initial vector.
2. Fork=1,2,...

21 Select step size v
2.2 Compute X, = Xp_1 — YRV L(XR_1)

Recall that the gradient of the regression functional is
ATA

VLX) =Wx—c, W= =

A direction calculation reveals that
Xp = Qp(W)C7

for a polynomial Qi of degree k — 1 with coefficients that depend on ~;, j =1,2,..., k.

28



More polynomials!

For simplicity, suppose that W is full rank. Then if x is the true minimizer, a crucial calculation is that

X—Xp =W "c—QuW)c=W"(I, — WQ,(W))c.
N————
Re(W)

Note that Ry is a polynomial of degree k satisfying Rx(0) = 1.
Then

V[,(Xk) = Wx, — Wx = ng(W)C,
IRe(W)c||” = c"Rp(W)’c.

29



For GD follows that the difference x, — x satisfies
Xp — X = Xp—1 — X — Ye(WXp—1 — WX) = (In — veW)(Xp—1 — X).

And so,

k
Re(x) = H(1 — %X)-

J=1
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For GD follows that the difference x, — x satisfies
Xp — X = Xp—1 — X — Ye(WXp—1 — WX) = (In — veW)(Xp—1 — X).

And so,

k
Re(x) = H(1 — %X)-

J=1

For CG the polynomial Ry is best characterized using the theory of orthogonal polynomials.

30



Enter RMT

IRe(W)ell” = c"Re(W)’c

The error analysis of GD (and, as it turns out, CG) is reduced to:

1. The determination/characterization of the polynomial Ry.
2. The estimation of ¢"Rp(W)’c.

31



Enter RMT

For many methods of interest (CG and GD included), the coefficients of R, depend continuously on
the eigenvalues and eigenvectors of W in a sufficiently strong sense that

Rk(x)L)Rk(x) +— deterministic.
n—oo

Then, one can conclude

ReW)2c— | Ru(x)pscn(dx).

n— oo R

This provides a deterministic limit for the (random) errors that are encountered throughout the
algorithm.

Note: This is true only if ¢ is independent of W and in the regression problem it is not.
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Building back to true regression

For the regression problem, we have

c= [ATAa n ATn} .

S| =

Then
1 2

1£(x)|]” = a"W*R(W)?a" + FnTAR,((WfATn + EaTWRh(W)ZATn

D Y ——
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c= [ATAa + ATn] .

S|=

Then
1 2

l£(x)|]> = a"W*R(W)?a” + ﬁnTARh(W)zATn o HaTWRk(W)ZATn

—_————

~0 if a,mindep.

4R / XRe(X) usem(dx) + R / XR(X)2 s (dX) .
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n—oo
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Building back to true regression

For the regression problem, we have

c= [ATAa + ATn] .

S|=

Then
1 2

l£(x)|]> = a"W*R(W)?a” + ﬁnTARh(W)zATn o HaTWRk(W)ZATn

—_————

~0 if a,mindep.

4R / XRe(X) usem(dx) + R / XR(X)2 s (dX) .
R R

n—oo

%
Important features:

- This demonstrates that the entire spectrum of W contributes via puscm

- Nearly all probabilistic analyses of algorithms give inequalities whereas this gives true

leading-order behavior.
33



Step-size selection

100 LR [ R nson (@0 + R [ Ru0 psone( )

If one has a good guess as to what the limiting distribution uscwm is then the +,'s in GD can be
chosen based on this limit — to minimize this expression, see Pedregosa and Scieur [2020].
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Step-size selection

1206)IPLR [ R0 nsena(d) + R [ xRy sen(@)
o0 R R
If one has a good guess as to what the limiting distribution uscwm is then the +,'s in GD can be

chosen based on this limit — to minimize this expression, see Pedregosa and Scieur [2020].

Furthermore, by preconditioning one can make such a guess valid, see Lacotte and Pilanci [2020].
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Deterministic halting

Provided that e, =220, one finds that
lim P(Ta(Prie) =min{k:ep <e}) =1,
n—oo

for most choices of e.

This turns out to be true for all d > n, n — oo, for the regression problem with CG or GD.

B85



Deterministic halting for CG with r =2, =10*
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CG with d = 800 and n = 400
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CG with d = 800 and n = 400

CG with d = 1600 and n = 800
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Outlook

RMT provides non-trivial tractable models to analyze the statistics of optimization algorithms.

Other algorithms are analyzable:

- MINRES algorithm

- Polyak algorithm

- Nesterov accelerated algorithm
- SGD for regression

See the preprints: Paquette and Trogdon [2020], Paquette et al. [2021], Ding and Trogdon [2021],
Paquette et al. [2020]
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Outlook

Other ensembles are analyzable using the following results from RMT:
- Spiked random matrices (see Baik et al. [2005], Bloemendal and Virag [2013], Ding and Yang
[2019], and many more)
- Nonlinear models (see Part 4)
- Random graphs (see Erdés et al. [2013], for example)

- Invariant ensembles (see Bourgade et al. [2014], Deift [2000] and many more)
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Open questions

Many open questions remain:
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Many open questions remain:

- To what extent can one move these ideas beyond regression? To a two-layer network?
Rank-one matrix completion problem?

39



Open questions

Many open questions remain:

- To what extent can one move these ideas beyond regression? To a two-layer network?
Rank-one matrix completion problem?

- What is a good probability distribution to study? Wishart is clearly the place to start but what
is relevant in practice?
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A CG demo

See Colab for a CG demo
https://colab.research.google.com/drive/
1UZRSK665b8s5qqONQFwMCwrVabP1B-7nK?usp=sharing
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Deep neural networks define a flexible and expressive class of functions.

= Standard wisdom suggests they should overfit
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However, large neural networks do not obey the classical theory:
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The emerging paradigm of double descent seeks to explain this phenomenon. 4
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1) Interpolating kernels (trained to zero error) generalize well [Belkin et al., 2018]

= Double descent is not unique to deep neural
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History of double descent: Kernel interpolation

1) Interpolating kernels (trained to zero error) generalize well [Belkin et al., 2018]

= Double descent is not unique to deep neural
networks Kermel Regression on MNIST
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log(error)

2) Kernels can implicitly regularize in high
dimensions [Liang and Rakhlin, 2020]
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Source: [Liang and Rakhlin, 2020]
3) Consistency is a high-dimensional phenomenon [Rakhlin and Zhai, 2019]:

The estimation error of the minimum-norm kernel interpolant
argmin ||flln st f(x) =y, i=1...n
feH

does not converge to zero as n grows, unless d is proportional to n.
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Models of double descent: High-dimensional linear regression

What is the simplest theoretically tractable model that exhibits double descent?

Linear regression suffices, but requires a mechanism to vary the effective number of
parameters or samples:

- The size of randomly selected subsets of features [Belkin et al., 2020]

- The dimensionality of the low-variance subspace [Bartlett et al., 2020]
- The sparsity of the generative model [Mitra, 2019]
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Models of double descent: Random feature models

In random feature regression, the number of random features controls the model
capacity, and can be tuned independently from the data.

Exact asymptotic results in high dimensions exist in many settings, including:
- Unstructured random features [Mei and Montanari, 2019]

+ NTK-structured random features [Adlam and Pennington, 2020]
- Random Fourier features [Liao et al., 2020]

++ NTK reg. pred.
--- NTK reg. emp.
—+ NN GD emp.
i

Test loss

Source: [Adlam and Pennington, 2020] Source: [Mei andrMontanari 2019]
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Random feature regression: definition

Random feature regression is just linear regression on a transformed feature matrix,
F = f(--WX) € R™*", where W € R, W;; ~ N(0,1).

- Model given by BTF (instead of 3TX) — variable capacity (m vs d parameters)
- f(-) is a nonlinear activation function, acting elementwise
- Fis equivalent to first post-activation layer of a NN at init
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and the optimal regression coefficients 3 are given by,

B=J=Y(K+ )T, K= ZFTF.



Random feature regression: definition

Random feature regression is just linear regression on a transformed feature matrix,
F = f(--WX) € R™*", where W € R, W;; ~ N(0,1).

- Model given by BTF (instead of 3TX) — variable capacity (m vs d parameters)
- f(-) is a nonlinear activation function, acting elementwise
- Fis equivalent to first post-activation layer of a NN at init

For targets Y € R™" the ridge-regularized loss is,
L(B:X) = Y — 5=BTFllz + AlIBII3.
and the optimal regression coefficients 3 are given by,
B=J=Y(K+ )T, K= ZFTF.
Note that Q = (K + Al,)~" is the resolvent of the kernel matrix K.



Random feature regression: training error

Training error is determined by the resolvent matrix Q = (K + Al,)~"

Ewain(A) = 2IY — =67 Fll3
= 3IY — 5 YQF TFII3
= 1|lY — yaK||3
= I¥(1, — QK)|I3
= N1lval3,

where we used that I, — QK =1, — Q(Q~" — Alp) = I, — (I, — AQ) = \Q.



Random feature regression: training error

Training error is determined by the resolvent matrix Q = (K + Al,)~"

Ewain(A) = 2IY — =67 Fll3
= 3IY — 5 YQF TFII3
= 1|lY — yaK||3
= I¥(1, — QK)|I3
= N1lval3,

where we used that I, — QK =1, — Q(Q~" — Alp) = I, — (I, — AQ) = \Q.

So we see that the training error measures the alignment between the resolvent and the
label vector.

What about the test error?



Aside: Generalized cross validation (GCV)

A model's performance on the training set, or subsets thereof, can be useful for
estimating its performance on the test set.

- Leave-one-out cross validation (LOOCV)

Eroocv(A) = #[YQ - diag(Q)~'|I2
- Generalized cross validation (GCV)

Eeev() = 71IYQIE/(71r(Q))°



Aside: Generalized cross validation (GCV)

A model's performance on the training set, or subsets thereof, can be useful for
estimating its performance on the test set.

- Leave-one-out cross validation (LOOCV)

Eroocv(A) = #[YQ - diag(Q)~'|I2
- Generalized cross validation (GCV)

Escv(X) = 2[YQl3/(3tr(Q))°
In certain high-dimensional limits, Escv(A) = Eroocv(A) = Erest(M):

- Ridge regression [Hastie et al., 2019]
- Kernel ridge regression [Jacot et al., 2020]
- Random feature regression [Adlam and Pennington, 2020]
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asymptotics:
m,d,n — oo suchthat ¢=92 ¢ =42 areconstant.

1



Random feature regression: high-dimensional asymptotics

To develop an analytical model of double descent, we study the high-dimensional
asymptotics:
m,d,n — oo suchthat ¢=7 9= % are constant.

In this limit, only linear functions of the data can be learned.

- Intuition: only enough constraints to disambiguate linear combinations of features.
- Nonlinear target function behaves like linear function plus noise

1



Random feature regression: high-dimensional asymptotics

To develop an analytical model of double descent, we study the high-dimensional
asymptotics:
m,d,n — oo suchthat ¢=7 9= % are constant.

In this limit, only linear functions of the data can be learned.

- Intuition: only enough constraints to disambiguate linear combinations of features.
- Nonlinear target function behaves like linear function plus noise

Therefore it suffices to consider labels given by

Y:%Q*TX—&-E, ei ~ N(0,0%).

1



Random feature regression: high-dimensional asymptotics

To develop an analytical model of double descent, we study the high-dimensional
asymptotics:
m,d,n — oo suchthat ¢=7 9= % are constant.

In this limit, only linear functions of the data can be learned.

- Intuition: only enough constraints to disambiguate linear combinations of features.
- Nonlinear target function behaves like linear function plus noise

Therefore it suffices to consider labels given by
Y= %Q*TX—FE, ei ~N(0,02).
For simplicity, we focus on the specific setting in which,

XUNN(O,’I) and ,B*NN(O,/d).
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Random feature regression: test error

In the high-dimensional asymptotic setup from above, the random feature test error can
be written as,

Etest()\) = EGC\/()\)
= lim 7[|vQ3/(5tr(Q))?
= lim Z|( 228" X +€)Ql3/(3tr(Q))’
= lim gtr[(o2ls + GXTX)Q%/(5tr(Q))*

‘7 cr(A) +1(A)
Tq()\)2 ’

where we used that %Q = —Q?, and we defined

7= lim r(Q) and m = im. Ltr(3XTXQ) .
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: = - T =
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Recalling the definition of K,
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it is evident that the entries of F are nonlinearly dependent.

- Cannot simply utilize standard results for Wishart matrices
- Stieltjes transform is insufficient for



Computing the asymptotic test error

To compute the test error, we need:
m = lim Lr(K+ Xp)™" and = im. Lr(IXTX(K + Mp) 7).
Recalling the definition of K,
.
K= %F F, F:f(%WX),

it is evident that the entries of F are nonlinearly dependent.

- Cannot simply utilize standard results for Wishart matrices
- Stieltjes transform is insufficient for

These technical challenges can be overcome with two tricks:

1. Constructing an equivalent Gaussian linearized model
2. Analyzing a suitably augmented resolvent



Computing the asymptotic test error: Gaussian equivalents

The nonlinear dependencies in F = f( WX) complicate the analysis.

Can we identify a simpler matrix in the same universality class?
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Computing the asymptotic test error: Gaussian equivalents

The nonlinear dependencies in F = f( WX) complicate the analysis.

Can we identify a simpler matrix in the same universality class?

There exist constants ¢; and ¢, such that
F = F[mEQ%WX%»CQ@, e,vij(OJ),

where F = F;, indicates the two matrices share all statistics relevant for computing the
test error:

7= lim 1tr(+ FTF+AIH)*1:n|LmOO%tr( Fl\Fiin + AMp) ™

n—oo

m = lim Ttr(2 XTX(%FTF+)\IH)*1):nILn;o%tr(%XTX( FinFiin + Aln)™")

n—oo
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Computing the asymptotic test error: Gaussian equivalents

The nonlinear dependencies in F = f( WX) complicate the analysis.

Can we identify a simpler matrix in the same universality class?

There exist constants ¢; and ¢, such that
F = F[mEQ%WX%»CQ@, e,vij(OJ),
where F = F;, indicates the two matrices share all statistics relevant for computing the
test error:
= lim Hr(ZFTF+ M)~ = lim 2tr(LF] Fin + M)~
n—oo

n—oo

m = lim Ttr(2 XTX(%FTF+)\IH)*1):nILn;o%tr(%XTX( FinFiin + Aln)™")

n—oo

How can we compute these traces? Need to augment the resolvent.
14



Computing the asymptotic test error: resolvent method

Recall from Part 2 that the resolvent method identifies consistency relations between
suitably chosen submatrices of the resolvent.

Here we can undertake a similar analysis as in Part 2, but now on an augmented matrix,

which encodes the resolvent through Q = (K + Mp) =" = [H™1.n.1:n.



Computing the asymptotic test error: resolvent method

Recall from Part 2 that the resolvent method identifies consistency relations between
suitably chosen submatrices of the resolvent.

Here we can undertake a similar analysis as in Part 2, but now on an augmented matrix,

which encodes the resolvent through Q = (K + Mp) =" = [H™1.n.1:n.

To derive consistency relations, we consider two submatrices: H() (leaving out
row/column 1), and H™ (leaving out row/column n + 1).

As before, we use the Sherman-Morrison formula to compute [HM]~" and [H"*"]~", and
relate them to Q and rows/columns of Fj,.

Straightforward concentration arguments eventually lead to coupled self-consistent
equations for 7; and 7, [Adlam et al,, 2019].



Computing the asymptotic test error: free probability

An alternative augmentation of the resolvent completely linearizes the dependence on

the random matrices:
M, 20T o xT 0
m

Vdm .

. 6O —ly 0 Gw 7
0 w' —ly 0
X 0 0 —ly

where the Schur complement formula now gives,

™ = n|i>n;o %tr([M_1]171), and T = nleoo %tr([M_1]473) .

The asymptotic blockwise traces tr([M~'], ;) can themselves be computed using free
probability [Adlam and Pennington, 2020].



Computing the asymptotic test error: free probability

M is linear in the random matrices X, W, and @©:

My 00 0 00 X" 0 0 0 0 o0 0 2" 0 0
C
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Can we compute the blockwise traces with free probability via the R-transform?



Computing the asymptotic test error: free probability

M is linear in the random matrices X, W, and @©:

My 00 0 00 X" 0 0 0 0 o0 0 2" 0 0
C
m—|0 0 Of Joo 0 o |0 oT 0 ZW| |e® o0 0 0
0 0 —lg O oo o0 of |ow 0o o0 0 0 00
0o 0 0 -4 [x 0 o0 o |0 0 0 O 0 0 00

Can we compute the blockwise traces with free probability via the R-transform?
Not naively: the additive terms are independent, but not free over C.

However, they are free over M4(C), and there exists a suitable operator-valued generalization of the
R-transform that enables the necessary computations [Mingo and Speicher, 2017].



Asymptotic test error

Let n = E[f(g)?] and ¢ = (E[gf(g)])? for g ~ N(0,1). Then, the asymptotic traces ()
and 7»(\) are given by solutions to the polynomial system,

(i (1= Am) = ¢/¢ ({2 + d(m2 — 7)) = (1 — 1) ¢ ((n — )1 +(72)

and, Eipin = f)\z(agﬁ’ +75) and Eiest = ,(057—1/ + 7'2')/712

Random Feature Regression, d = n Random Feature Regression, d = n/2 log1o(A)
-1
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