
Privacy in learning: 
Basics and the Interplay
ICML tutorial

Presenters: Wei Chen, Huishuai Zhang

Microsoft Research Asia

Microsoft Research Asia 1



About the presenters

Microsoft Research Asia 2



Overview of the tutorial

0. Background on privacy
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Overview of the tutorial
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What is privacy?

• Privacy is the claim of individuals (groups or institutions) to 
determine for themselves when, how, and to what extent 
information about them is communicated to others [Wiki]

General definition 
of privacy

• Data privacy attempts to use data while protecting an 
integrity of individual's privacy preferences and personally 
identifiable information.

Privacy in 
machine learning
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Why is privacy issue more urgent in an AI era?

• Sensitive data are recorded anytime and 

anywhere

• Machine learning is a powerful tool to 

extract information.

• AI enables the adversary to exploit the data

• Simple anonymization is not safe
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How to protect privacy in AI era?

Core principle: Control information flow from private to public.
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How to protect privacy in AI era?

Trained model

Model interacts 
with data

Data
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How to protect privacy in AI era?

Trained model

Model interacts 
with data

Data Data security

Microsoft Research Asia 10



How to protect privacy in AI era?

Trained model

Model interacts 
with data

Data

Federated learning

Homomorphic encryption

Multi-party computation

Trusted Execution Environment
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How to protect privacy in AI era?

Trained model

Model interacts 
with data

Data

Will the trained model leak 
information of the data? 

How to defend? 

Differential privacy.
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Federated Learning is to handle data islands

Figure is from 
Wiki
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Federated Learning is to handle data islands

• Basic 

• What privacy is going to get? 

Figure is from 
Nvidia blog
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Federated Learning is to handle data islands

• Cut off the global model from 
directly accessing raw data.

• Add certain privacy barrier 
when doing local model 
aggregations

Privacy 
promise

• Gradient matching attack to 
recover the raw data. [Zhu et 
al.2019, Zhao et al.2020]

Potential 
Risk

• Distributed machine learning: 
local SGD [Stich 2019, 
Woodworth et al.2020]

• Multiparty computing to 
securely aggregate.

• Differential privacy to hide the 
local model’s contribution.

Techniques
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Confidential computing

• Confidential computing guarantees that the data is confidentially computed in the ML system.

Privacy Barrier

Compute

Data is exposed!
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Confidential computing: current solutions

Trusted execution environment (TEE): An enclave 
in computation provider 

Homomorphic encryption:

𝐸𝑛 𝑥 + 𝑦 = 𝐸𝑛(𝑥) ⊕ 𝐸𝑛(𝑦)

Multiparty secure computing
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Trusted Execution Environment

• Trusted Execution Environment (TEE) [Ohrimenko et 

al. 2016, Hunt et al. 2018]

• Software-based TEE: Virtual Secure Mode(VSM) in 

Windows 

• Hardware-based TEE: Intel SGX

• It is an enclave in the computation provider, and only 

the authorized individual can access it.
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Untrusted environment
Computing in Cloud

-5

Compute while encrypted

User side

Encrypt

Decrypt

CiphertextPlaintext

Secret input

20

Computed result

30

$fA4!&s2FDfs4

e#3Ad09!B%gD

$fA4!&s2FDfs4

e#3Ad09!B%gD

x2

Homomorphic Encryption [Dowlin et al.2016]

The good news:

• Very strong security guarantees

The not-so-good news:

• Significant performance loss (~100-100,000x)
• Only some computations supported
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Multi-Party Computing

• Goal: Jointly compute a function 

over private inputs

• Examples 

• Sum of multiple numbers; 

Millionaires’ problem

• Threat model: honest but curious

• Huge communication cost

Figure is from 
[Lemus et al.2019]
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Confidential computing: solution overview

Confidential Solutions Provable 
encryption

Communication 
overhead

Computation 
overhead

Trusted executive 
environment

No Yes Yes

Fully homomorphic 
encryption

Yes Yes No

Multi-Party Computing Yes No Yes
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Will the trained model leak information of the data? 

• Model inversion attack against a 

trained facial recognition model.

• [Zhang et al.2020] “The Secret 

Revealer: Generative Model-

Inversion Attacks Against Deep 

Neural Networks.” 

User images:

Attack results:

Figure is from 
[Zhang et al.2020]
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Will the trained model leak information of the data? 

• Privacy leakage of GPT2 [Carlini et al. 2020].

• Reconstruct training samples from trained 

model.

Figure is from 
[Carlini et al. 2020]
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How to defend against model leakage?

Differential privacy
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Attacker model: statistical inference

• From the output of a query, try to infer a 

problem: 

“Is a data point in the dataset?”

• Differential privacy is to defend statistical 

inference.

Let’s say James comes to see a doctor…. 

James is sick.
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Scope of 
the Tutorial

• Differential privacy measures and their properties

• Private machine learning 

• Differential privacy for machine learning

What we do cover

• Securing data using encryption

• Computation on encrypted data

• Multi-party computation

• Access control, trusted executive environment

• Anonymization and de-anonymization

What we do not cover
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Overview of the talk
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1. Privacy measures

Differential 
privacy

Rényi
differential 

privacy

Typical 
schemes

Composition
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2. Private machine learning 

Private 
machine 
learning

Promise 
and 

drawback

Ways to 
improve
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3. ML also borrows from DP

Theoretically, helps to analyze 
the generalization, concentration

Empirically, used to defend 
against a wide range of attacks.
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4. What is next?

ML-friendly privacy measures

Privacy in language model / generative model

Privacy guarantee for federated learning
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1. Privacy measures
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Privacy measures and their properties

Differential 
privacy

Rényi
differential 

privacy

Typical 
schemes

Composition
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Definition: 𝒜 is 𝜀-differentially private if 
two datasets 𝐷,𝐷′ ∈ 𝒟𝑛 that differ in 
one individual then 
Pr 𝒜 𝐷 ∈𝑆

Pr 𝒜 𝐷′ ∈𝑆
≤ 𝑒𝜀 , ∀𝑆 ⊆ Range(𝒜).

Intuitive meaning: A single data point will 
not change the output much.

Differential privacy

How to achieve DP? Through randomness.
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Definition: 𝒜 is 𝜀-differentially private if two datasets 𝐷,𝐷′ ∈ 𝒟𝑛 that differ in one 

individual then 
Pr 𝒜 𝐷 ∈𝑆

Pr 𝒜 𝐷′ ∈𝑆
≤ 𝑒𝜀 , ∀𝑆 ⊆ Range(𝒜).

• 𝜀 captures how much privacy we obtain: the smaller 𝜀, the better privacy
• Arbitrary two datasets, differing by an arbitrary individual, for an arbitrary

observation 𝑆

Differential privacy
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A relaxation of 𝜖-Differential privacy: (𝜀, 𝛿)-DP. 
𝒜 is (𝜀, 𝛿)-differentially private if two datasets 𝐷1, 𝐷2 ∈ 𝒟𝑛 that differ in one 
individual then Pr[𝒜 𝐷1 ∈ 𝑆] ≤ 𝑒𝜀 Pr 𝒜 𝐷2 ∈ 𝑆 + 𝛿, ∀𝑆 ⊆ Range(𝒜).

𝜀, 𝛿 -differential privacy interpretation: by excluding an event with 𝛿 probability, it 
satisfies 𝜀-differential privacy.

Differential privacy: (𝜀, 𝛿) relaxation
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Differential privacy: Typical schemes

• Goal: output 𝑓(𝐷) with DP

• Randomized algorithm 𝒜 𝐷 ≔ 𝑓 𝐷 + 𝒛, where 𝒛 is random noise. 

• 𝒛 depends on sensitivity 𝑆𝑝 ∶= max
D~D′

𝑓 𝐷 − 𝑓 𝐷′
𝑝

• Each dimension’s noise is i.i.d.

• Gaussian mechanism can not guarantee 𝜀-DP for any finite 𝜀. 
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Laplace mechanism (𝜀-DP)                      Gaussian mechanism (𝜀, 𝛿)-DP

p 𝑧𝑖 =
𝜀

2𝑆1
exp −

𝜀

𝑆1
𝑧𝑖 𝑧𝑖 ~ 𝒩 0,

𝑆2

𝜀
𝐶 log 1/𝛿
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Differential privacy: Proof of the privacy

Laplace mechanism (𝜀-DP):  𝑝Lap 𝑧𝑖 =
𝜀

2𝑆1
exp −

𝜀

𝑆1
𝑧𝑖 . Denote 𝑏 =

𝑆1

𝜀
.

Pr[𝒜 𝐷 = 𝑦]

Pr[𝒜 𝐷′ = 𝑦]
=

Π𝑖𝑝𝐿𝑎𝑝 𝑦𝑖 − 𝑓 𝐷 𝑖

Π𝑖𝑝𝐿𝑎𝑝 𝑦𝑖 − 𝑓 𝐷′
𝑖

= Π𝑖 exp(𝑏
−1( 𝑦𝑖 − 𝑓 𝐷 𝑖 − |𝑦𝑖 − 𝑓 𝐷′

𝑖|))

≤ exp 𝑏−1෍

𝑖

𝑓 𝐷 𝑖 − 𝑓 𝐷′
𝑖

= exp 𝑏−1 𝑓 𝐷 − 𝑓 𝐷′
1

≤ exp(𝜀)
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Differential privacy: Proof of the utility  

Suppose 𝑓 𝐷 is computing the average of 𝐷: 𝑓 𝐷 =
1

𝑛
σ
𝑋(𝑘)∈𝐷𝑋

(𝑘),  and 𝑋(𝑘) ∈ ℝ𝑑 , 

then with high probability

𝑓 𝐷 −𝒜 𝐷 1 = 𝒛 1 ≤ 𝑂
𝑑𝑆1
𝜀𝑛

The error scales proportionally with the dimension 𝑑 and the sensitivity 𝑆1.
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Differential privacy: Typical schemes

• Sensitivity 𝑆𝑝 = max
D,D′: D~D′

𝑓 𝐷 − 𝑓 𝐷′
𝑝 (worst case measure)

• Larger sensitivity → larger noise → bad utility

• Sensitivity has been relaxed, data dependent sensitivity.

• Local sensitivity 𝐿𝑆(𝐷) = max
D′: D′~𝐷

𝑓 𝐷 − 𝑓 𝐷′ , and the smoothed version [Nissim et 

al.2007, Sun et al.2020].

• Dimension. 

• The error could be extremely large for high dimensional output.

• Can we get rid of this dependence? Yes, for some structure assumption, i.e., sparsity. 
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Differential privacy: Typical schemes

• Exponential mechanism [McSherry&Talwar 2007]

• A score function maps the (data, output) pairs to a score: 𝑢 𝐷, 𝑟

• Define 𝑆 = max
𝑟

max
𝐷~𝐷′

|𝑢 𝐷, 𝑟 − 𝑢(𝐷′, 𝑟)|

• Mechanism: Output 𝑟 with probability proportional to exp
𝜀

2𝑆
𝑢 𝐷, 𝑟 to preserve (𝜀, 0)-

differential privacy 

• Laplace and Gaussian mechanisms are cases of Exponential Mechanism

𝑝𝐿𝑎𝑝 𝑟 ∝ exp −
𝜀 𝑟 − 𝑓 𝐷 1

𝑆1
, 𝑝𝐺𝑎𝑢 𝑟 ∝ exp −

𝜀2 𝑟 − 𝑓 𝐷 2
2

𝐶𝑆2
2 log 1/𝛿
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• Post-processing:
• Privacy risk doesn’t increase if further processing the DP outputs. 

An (𝜀, 𝛿) 
differentially 

private 
mechanism

ℳ

Any 
mechanism 
that does 

NOT access 
the dataset

An (𝜀, 𝛿) 
differentially 

private 
mechanism 

ℳ′

Differential privacy: properties (Post-processing)
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• Composition of mechanisms. Consider the example of gradient descent.

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ⋅
1

𝑚
෍

𝑖=1

𝑚

∇𝜃ℓ 𝑥𝑖; 𝜃𝑡 ,

we may ensure privacy of each step 𝑡 by adding noise 𝜁𝑡. 

• What about the final privacy level after 𝑇 iterations?

Differential privacy: properties (Composition)

Theorem [Basic composition, Dwork&Lei 2009]: Let 𝒜1:𝑘 be 𝑘 mechanisms with independent 
noises such that 𝒜𝑖 is (𝜀𝑖 , 𝛿𝑖)-DP. Then the adaptive composition of 𝒜1:𝑘 is σ𝑖 𝜀𝑖 , σ𝑖 𝛿𝑖 -DP.

Proof. The proof idea is to examine the definition and use induction.
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Theorem: Let 𝒜1:𝑘 be 𝑘 mechanisms with independent noises such that 𝒜𝑖 is (𝜀, 𝛿)-DP. 

Then the adaptive composition of 𝒜1:𝑘 is 𝑂 𝑘𝜀 , 𝑂 𝑘𝛿 -DP for small 𝜀.

• Basic composition theorem does not exploit the independence of the added noise, loose bound.

• Advanced composition theorem [Kairouz et al. 2015]:

Proof. See next page.

Differential privacy: properties (Composition)
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• Privacy loss random variable 

𝐿 𝑝 ∥ 𝑞 ≔ log
𝑝 𝜉

𝑞 𝜉
,

where 𝑝 and 𝑞 are two probability densities and 𝜉~𝑝(⋅). DP is about the tail bound of 𝐿 𝑝 ∥ 𝑞 .

• Claim: If Pr 𝐿 𝒜(𝐷) ∥ 𝒜(𝐷′) > 𝜀 < 𝛿,  then 𝒜 is (𝜀, 𝛿)-DP.
• Fact: 𝔼𝐿 𝑝 ∥ 𝑞 = KL 𝑝 ∥ 𝑞 .

• Fact: For Gaussian mechanism, 𝐿 𝒜(𝐷) ∥ 𝒜(𝐷′) is a Gaussian variable, 𝒩
Δ 2

2

2𝜎2
,
Δ 2

2

𝜎2
, 

where Δ ≔ 𝑓 𝐷 − 𝑓 𝐷′ .

Differential privacy: some math for composition

Proof of advanced composition: View the overall privacy loss as  the sum of independent/conditional 
independent variables, and use concentration bound (Azuma’s Inequality)
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Differential privacy: properties (Composition)

• The composition bound can be further improved for specific mechanisms.

• Gaussian mechanisms: moment account [Abadi et al. 2016]

• Laplace mechanisms: 𝑓-differential privacy [Dong et al. 2019]

• Exponential mechanisms: 40% saving of privacy budget [Dong et al. 2020]
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Variants: Rényi differential privacy

• Problem with (𝜀, 𝛿)-differential privacy

• Gaussian mechanism satisfies an infinite many pairs (𝜀, 𝛿), which are not comparable.

• 𝜀, 𝛿 -DP has two parameters, hard to choose best pair 𝜀, 𝛿 when using composition

• Rényi differential privacy [Mironov2017]

Definition (Rényi divergence). For two probability distributions 𝑃 and 𝑄, the Rényi
divergence of order 𝛼 > 1 is 

𝐷𝛼 𝑃 ∥ 𝑄 ≔
1

𝛼 − 1
log 𝔼𝑥~𝑄

𝑃 𝑥

𝑄 𝑥

𝛼

.

• Notable relation: lim
𝛼→1

𝐷𝛼 𝑃 ∥ 𝑄 = 𝐾𝐿(𝑃 ∥ 𝑄) 𝐷∞ 𝑃 ∥ 𝑄 = sup
𝑥∈𝑠𝑢𝑝𝑝(𝑄)

log
𝑃 𝑥

𝑄 𝑥

• For 𝒩 𝜇1, 𝜎
2𝑰 and 𝒩 𝜇2, 𝜎

2𝑰 , Rényi divergence 𝐷𝛼 𝒩1 ∥ 𝒩2 =
𝛼 𝜇1−𝜇2 2

2

2𝜎2
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Variants: Rényi differential privacy

• (𝛼, 𝛾)- Rényi differential privacy 

• Example: The Gaussian mechanism satisfies a continuum pairs 𝛼, 𝛾 𝛼 for any 𝛼 > 1 as 

𝐷𝛼 𝒩1 ∥ 𝒩2 =
𝛼 𝜇1−𝜇2 2

2

2𝜎2
.

Definition. A randomized mechanism 𝒜:𝒟 → ℛ is said to have (𝛼, 𝛾)- Rényi differential 
privacy (RDP), if for any adjacent 𝐷,𝐷′ it holds that 

𝐷𝛼 𝒜 𝐷 ∥ 𝒜 𝐷′ ≤ 𝛾.
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Variants: Rényi differential privacy

• (𝛼, 𝛾)- RDP enjoys simple composition property.

• Example (Gaussian mechanism). Suppose 𝑆 = 1. We compute the adaptive composition of  𝑘

Gaussian mechanisms on the same query. Each 𝒜𝑖 is 𝛼, 𝛾 -RDP, then their composition 

𝒜𝑖 𝑖=1
𝑘 satisfies  𝛼, 𝑘𝛾 -RDP.

Theorem [Mironov2017]. Let 𝒜1: 𝒟 → ℛ1 be (𝛼, 𝛾1)-RDP and 𝒜2: ℛ1 × 𝒟 → ℛ2 be 
(𝛼, 𝛾2)-RDP, then the mechanism (𝒜1, 𝒜2) satisfies (𝛼, 𝛾1 + 𝛾2)-RDP.
Proof. From the definition of Rényi divergence.
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Variants: Rényi differential privacy

• Translation from (𝛼, 𝛾)-RDP to (𝜀, 𝛿)-DP

• Proof. Based on an application of Hölder’s inequality. 𝑃 𝐸 ≤ exp 𝐷𝛼 𝑃 ∥ 𝑄 ⋅ 𝑄 𝐸
𝛼−1

𝛼 .

• We can compute a best pair (𝜀, 𝛿) from a continuum 𝛼, 𝛾 𝛼 -RDP. 

Theorem [Mironov2017]. If 𝒜 is (𝛼, 𝛾)-RDP, it also satisfies 𝛾 +
log 1/𝛿

𝛼−1
, 𝛿 -DP for any 0 < 𝛿 < 1. 
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Variants: Rényi differential privacy

• Proof of composition of 𝑘 (𝛼, 𝛾)-RDP mechanisms from moment accountant [Abadi et al.2016]. 

• Recall the privacy loss log
𝑝𝑖 𝜉1:𝑖

𝑞𝑖 𝜉1:𝑖
,    the (𝛼 − 1) MGF is 𝑀𝑖 = 𝔼exp 𝛼 − 1 log

𝑝𝑖 𝜉1:𝑖

𝑞𝑖 𝜉1:𝑖

• Prove 𝑀𝑖 ≤ exp 𝛼 − 1 𝛾 𝑀𝑖−1 via conditional expectation. Hence 𝑀𝑘 ≤ exp 𝛼 − 1 𝑘𝛾

• Then by the definition of Rényi divergence, 𝐷𝛼 𝑝𝑘 ∥ 𝑞𝑘 = 𝛼 − 1 −1 log𝑀𝑘 ≤ 𝑘𝛾.

• Other similar formalized definitions are CDP, zCDP [Dwork&Rothblum2016, Bun&Steinke2016].

• Another recent measure is 𝑓-differential privacy [Dong et al.2019]. 
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2: Private machine learning
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Private machine learning

Machine learning with privacy guarantee

The promise and the drawbacks 

Ways to improve
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Training data

Objective (ERM)
Training algorithm

Output a model

Private Training 
data

Objective (ERM)
Training algorithm

Output a model

Machine learning with privacy guarantee
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Will the final model leak 
private information of data?

Yes.

Differential privacy.



Private 
Training data

1. Objective (ERM)
2. Training algorithm

3. Output a model

Machine learning with privacy guarantee

• Approach to achieve DP: Adding noise

• When? [Yu et al.2020]

• How large is the noise? 

• Sensitivity: how much change does one 

sample could make to the final output? 

• For objective and output perturbation, ~𝛽/𝜇.

• Clipping gradient can be the sensitivity for 

gradient perturbation (suitable for DNN). 
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Objective perturbation
[Chaudhuri et al.2017; Iyengar et 

al.2019]

Gradient perturbation
[Bassily et al. 2014]

Output perturbation
[Wu et al. 2017]



DP-SGD
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Algorithm SGD

1. Random initialization 𝜃0
2. For 𝑡 = 1, 2, … , 𝑇

Sample a data point 𝑖𝑡~{1, 2, … , 𝑛}

𝑔𝑡 = ∇ℓ 𝜃𝑡−1, 𝑥𝑖𝑡 , 𝑦𝑖𝑡
𝜃𝑡 = 𝜃𝑡−1 − 𝜂𝑡𝑔𝑡

Return መ𝜃 = 𝜃𝑇

Algorithm DP-SGD

1. Random initialization 𝜃0
2. For 𝑡 = 1, 2, … , 𝑇

Sample a data point 𝑖𝑡~{1, 2, … , 𝑛}
Generate noise 𝑧𝑡~𝑝(𝜀,𝛿)

ො𝑔𝑡 = ∇ℓ 𝜃𝑡−1, 𝑥𝑖𝑡 , 𝑦𝑖𝑡 + 𝑧𝑡

𝜃𝑡 = 𝜃𝑡−1 − 𝜂𝑡 ො𝑔𝑡
Return መ𝜃 = 𝜃𝑇



How large is the noise in DP-SGD?

• The noise depends on the sensitivity of the gradient

max
𝐷,𝐷′

max
𝜃

∇𝐿 𝜃; 𝐷 − ∇𝐿(𝜃;𝐷′)

• Sensitivity depends on the smoothness of the loss.

• One can also clips the individual gradient to a predefined threshold [Chen et al. 2020]. 
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The privacy proof of DP-SGD

• Privacy proof is straightforward based Rényi differential privacy given the sensitivity 𝑆. 

• Each call of Gaussian mechanism satisfies 𝛼, 𝛾 𝛼 -RDP, where 𝛾 𝛼 =
𝑆𝛼

𝜎2
.

• By the composition property of RDP, overall 𝑇 iterations satisfies 𝛼, 𝑇𝛾 𝛼 -RDP

• Translate the 𝛼, 𝑇𝛾 𝛼 -RDP to 𝜀, 𝛿 -DP, optimizing the 𝜀, 𝛿 over 𝛼 ∈ (1,∞).

• For DP-SGD, we to need consider privacy amplification by subsampling [Mironov et al. 2019].
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Lemma: Let 𝒜 be 𝜀, 𝛿 -DP algorithm. Let 𝑆𝑎𝑚𝑝 be a procedure that given a data set 𝐷 of size 𝑛, randomly 

samples 𝑘 entries (with replacement) from 𝐷. Then the algorithm 𝒜(𝑆𝑎𝑚𝑝 ⋅ ) is 𝑂
𝑘

𝑛
𝜀 , 𝛿 -DP.



The utility proof of DP-SGD

• The utility of DP-SGD or DP-GD can be analyzed via noisy gradient descent, where the noise 

depends on the 𝜀, 𝛿 and the number of iterations.

• The excess error of DP-SGD is 𝑂
𝑝

𝑛𝜀
[Bassily et al. 2014]. Utility deteriorates as the model 

dimension gets larger.

• Empirically, this has also been verified [Tramer&Boneh 2021].
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The empirical performance of DP-SGD

• Some empirical results of DP-SGD [Abadi et al. 2016, Code in PyTorch]

• Code implementation [Opacus, BackPACK], reduce the cost of computing individual gradients

• Wait, 𝜀 = 8! Quite nonsense as 𝑒8 ≈ 2981. How private is DP-SGD? 
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Dataset Model Non-private 𝜺 = 𝟐 𝜺 = 𝟓 𝜺 = 𝟖

MNIST CNN-2layer 99.1% 94.7% 96.8% 97.2%

SVHN ResNet20 95.9% 87.1% 91.3% 91.6%

CIFAR10 ResNet20 90.4% 43.6% 52.2% 56.4%

https://github.com/dayu11/Differentially-Private-Deep-Learning


The promise and the 
drawbacks of DP-SGD 
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The promise of DP-SGD

• How private is DP-SGD [Jagielski et al. 2020, Nasr et al. 2021]? How to empirically 

measure this?

• By definition, differential privacy provides a provable defense for data poisoning 

attacks.

• Design strong data poisoning attacks to measure a lower bound on the privacy 

offered by differentially private algorithms.
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The promise of DP-SGD

• The attack process [Nasr et al. 2021]
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Figure from [Nasr et al. 2021]



The promise of DP-SGD

• What DP-SGD promise?

• For real strong dataset attacks, what DP 

promises matches the empirical lower bound

• The bounds of DP are quite tight.

• On the other hand, if the adversary has 

physical API restriction: only have black-box 

access to the trained model (most practical)
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The drawbacks of DP-SGD

• Drawback 1: The utility depends on output dimension, with large utility drop for large models.

• Drawback 2: Computation cost,

• Handling per-sample gradients requires more computation and much more memory than SGD.

• Fast and Memory Efficient Differentially Private-SGD via JL Projections [Bu et al. 2021]
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Ways to improve private 
machine learning
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1. Hide intermediate updates

• DP-SGD releases the whole trajectory (𝜃1, ⋯ , 𝜃𝑇),  each with DP and then composes the privacy 

losses together. 

• However, often, we only concern the privacy of final output 𝜃𝑇

• Intuitively, the privacy parameter of 𝜃𝑇 is strictly smaller than (𝜃1, ⋯ , 𝜃𝑇)

• How to theoretically argue this?
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1. Hide intermediate updates

• Hide the parameters in the mid-steps can help privacy 

• Rishav et al. [2021] prove for strongly convex and smooth loss function, if the initialization is chosen as 

a Gibbs distribution, the privacy loss of 𝜃𝑇 converges exponentially fast.

𝜀 = 𝑂 1 − exp −
𝑂(𝑇)

2

• Also, Feldman et al. [2018] demonstrate that for contractive iterations, not releasing the intermediate 

results amplifies the privacy guarantees.

• Open problem: How to argue the benefit of hiding intermediate updates for general iterative 

algorithms?
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2. Exploit the prior of the learning problem

• For example, the sparse structure of the learning problem [Kalwar et al.2015, Cai et al. 2020].

• Cai et al. 2020 “The cost of privacy”

• For high-dimensional mean estimation, ℳ 𝑋 − 𝜇𝑃 2~ 𝑂
𝑠 log 𝑑

𝑛
+

𝑠 log 𝑑 log
1

𝛿

𝑛𝜀
, the minmax  

lower bound and achievable bound match.

• Algorithm: “peeling + private max”. It first identifies the non-zero coordinates (approximately) and set 

other coordinates to be 0 and then conducts the regression on such support set. It requires the 

sparsity level.
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2. Exploit the prior of the learning problem

• How about the general learning scenario?

• Train ResNet on CIFAR10

• Not sparse at all.

• Exploit the prior of the learning problem

• Via knowledge transfer [Papernot et al.2017, Papernot et al.2018]

• Via causal structure [Tople et al.2020]

• Via the redundancy of gradients across samples [Zhou et al.2021, Yu et al.2021a]

• Via a priori diagonal scaling matrix [Asi et al.2021]

• Via low-rankness of the gradient of NN layers [Yu et al.2021b]
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PATE [Papernot et al.2017&2018]

PATE: Private Aggregation of Teacher Ensembles. It exploits the knowledge transfer ability of NN.
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Figure from [Papernot et al. 2017]



Exploit redundancy of gradients across samples 
[Zhou et al.2021, Yu et al.2021a]

• Recall one drawback DP-SGD: Bad dimensional dependence

• Gradient perturbation: ෤𝑔 = 𝑔 + 𝑧, where 𝑔 ∈ ℝ𝑝 and 𝑧 ∼

𝑁 0, 𝜎2𝐼𝑝×𝑝 . 

• Note that 𝑧 ∝ 𝑝 while 𝑔 roughly unchanged with 𝑝.

• Signals are submerged in noise for large 𝑝.
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Larger model Larger noise Limited utility
Figure from [Yu et al. 2021]



Exploit redundancy of gradients across samples 
[Zhou et al.2021, Yu et al.2021a]

• IDEA: Project gradient into low-dimensional subspace due to the gradient redundancy across 

samples.
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Private 
dataset

Private gradients 
(𝐺 ∈ ℝ𝑛×𝑝)

Gradient embedding 
(𝑊 ∈ ℝ𝑛×𝑘)

Gradients on 
auxiliary data

Anchor subspace
(𝐵 ∈ ℝ𝑘×𝑝)

Residual gradients
(𝑅 ∈ ℝ𝑛×𝑝)

Perturbed embedding 
(෥𝑤 ∈ ℝ𝑘)

Perturbed residual
( ǁ𝑟 ∈ ℝ𝑝)

project
Release ෥𝑤𝐵

Or ෥𝑤𝐵 + ǁ𝑟



Exploit a priori diagonal scaling matrix 
[Asi et al.2021]

• IDEA: Scale the noise with a diagonal matrix given by a priori knowledge.
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Private 
dataset

Private gradients 
(𝐺 ∈ ℝ𝑛×𝑝)

Public diagonal 
matrix (𝐴 ∈ ℝ𝑝×𝑝)

Perturbed gradient 
( ෤𝑔 ∈ ℝ𝑝)

Release ෤𝑔



Exploit low-rankness of the gradient of NN layers 
[Yu et al.2021b]

The update for 𝑊 is 𝜕𝐿 𝑅 + 𝐿 𝜕𝑅 − 𝐿𝐿𝑇 𝜕𝐿 𝑅, equivalent to projecting 𝜕𝑊
into the subspace spanned by 𝐿 and 𝑅.

Microsoft Research Asia 83

RGP: Reparametrized gradient perturbation. Exploit the low-rankness of the gradient of weight 
matrix.
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3. ML also borrows from DP
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What does ML borrow from DP?

Theoretically, differential privacy has provided new ways to analyze the 
generalization, algorithmic stability, concentration in machine learning. 

Empirically, the idea of differential privacy has been used to defend a 
wide range of attacks.
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3.1 Algorithmic stability via differential privacy

• Differential privacy can ensure high prob. generalization [Bassily et al.2016, 

Feldman et al. 2018]:       Pr 𝑔𝑒𝑛 > 𝑂 𝜀Δ < 𝑂
𝛿

𝜀
.

• New concentration inequalities [Steinke&Ullman 2017]

• Classical result ∀𝜀 ≥ 0, Pr σ𝑖
𝑛(𝑋𝑖 − 𝜇𝑖) ≥ 𝜀𝑛 ≤ 𝑒−Ω 𝜀2𝑛 .

• Proof is via MGF + Markov inequality.

• New proof is based on a proxy max 0, 𝑌1, … , 𝑌𝑚 , where 𝑌𝑘 is copy of 𝑌 = σ𝑖
𝑛(𝑋𝑖 − 𝜇𝑖)

• It works for some heavy tail setting where previous MGF approach fails.
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3.1 PAC-Bayesian generalization bound using private 
prior [Dziugaite & Roy 2018]

• Recap: Let ℋ be a hypothesis space, and ℓ:ℋ × 𝑍 → [0,1] be the loss.

• Risk and empirical risk: 𝐿𝒟 ℎ = 𝔼𝑧~𝒟[ℓ(ℎ, 𝑧)], 𝐿𝑆 ℎ =
1

𝑛
σ𝑖
𝑛 ℓ ℎ, 𝑧𝑖

• PAC-Bayes generalization bound is for Gibbs classifier, a probability distribution on ℋ.

• The risk of a Gibbs classifier 𝑄 is 

𝐿𝒟 𝑄 = 𝔼ℎ~𝑄 𝐿𝒟 ℎ = 𝔼𝑧~𝒟𝔼ℎ~𝑄[ℓ(ℎ, 𝑧)]

• PAC-Bayes bound [Caoni 2007]: choose a prior 𝑃 on weights, given a dataset 𝑆~𝒟𝑛,

∀𝑄, 𝐿𝒟 𝑄 ≤ 𝐿𝑆 𝑄 +
KL 𝑄 ∥ 𝑃 + log

𝑛
𝛿

2𝑛
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3.1 PAC-Bayesian generalization bound using private 
prior [Dziugaite & Roy 2018]

• How to tighten the PAC-Bayes bound?

• Optimize the prior, find a 𝑃∗ that is close to the posterior.

• The prior can depend on data distribution 𝒟 but cannot depend on the data

• IDEA: use the data in a safe way to learn a prior. → Learn with differential privacy

• Achieve non-vacuous generalization bound for some deep neural network setting.
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Theorem: Let 𝑃 𝑆 be an 𝜀-differentially private prior. Then, w. p. ≥ 1 − 𝛿 over the 
random sampling of 𝑆,

∀𝑄, Δ 𝐿𝑆 𝑄 , 𝐿𝒟 𝑄 ≤
KL 𝑄 ∥ 𝑃 𝑆 + log

4 𝑛
𝛿

2𝑛
+
𝜀2

2
+ 𝜀

log 4/𝛿

2𝑛



3.2 DP defends against practical attacks

• Membership Inference (MI) Attack:

• Models trained with DP are robust against MI attacks [Bernau et al., 2019].
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Figure from [Yu et al. 2021]

MNLI (BERT) QQP (BERT) CIFAR10 (ResNet) SVHN (ResNet)

Non. Priv. 60.3 56.1 58.1 56.4

𝜀 = 8 50.1 50.0 50.3 50.1

Table from [Yu et al. 2021]



3.2 DP defends against practical attacks

• Models trained with differential privacy are also robust against

• Data poisoning attack [Ma et al. 2019, Hong et al. 2020].

• Gradient matching attack [Zhu et al. 2019].

• Adversarial examples, certified robustness [Lecuyer et al. 2019].

• Model inversion attack [Carlini et al. 2019].
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4. What is next?
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Within differential privacy

• There is still a performance gap between non-private learning and private learning.

• Large gap to improve

• Efficiency for training extreme large models (GPT2/3) with differential privacy

• New relaxations: Bayesian differential privacy [Triastcyn&Faltings 2020]

• Relation between private learning and online learning [Abernethy et al. 2019, Jung et al. 2020]

• Differential privacy and fairness

• Joint private and fair learning algorithm [Jagielski et al. 2019, Mozannar et al. 2020]. Is privacy at odds with fairness?

• Privacy, memorization and generalization [Zhang et al.2019, Feldman 2020]

• Does learning require memorization?

• DP is against memorization and DP is used to show generalization.
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Beyond differential privacy

• Privacy measure in language model [Zanella-Béguelin et al. 2020, Inan et al. 2021]

• Perplexity as privacy measure.

• API boundary

• Generative models

• DP-GAN [Neunhoeffer et al. 2021]

• Use GAN to extract original dataset [Cai et al. 2021]

• Privacy in federated learning
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