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A tobot wrote this entire article. Are you
scared yet, human?
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Human-Level Al: “Broad” - Versatile, Multi-Task

How Do We Achieve This?




Lifelong, Continual Learning

“Continual learning is the constant development of
Increasingly complex behaviors; the process of building
“2 more complicated skills on top of those already developed.”

Ring (1997). CHILD: A First Step Towards Continual Learning.




Continual Learning Challenges in Practical Applications

A robot acquiring new skills in
different environment, adapting to

new situations, learning new tasks

~ S. Thrun and T. Mitchell. Lifelong robot learning. Robotics
and Autonomous Systems, 15:25-46, 1995.

o e

Lesort, T., Lomonaco, V., Stoian, A., Maltoni, D., Filliat, D. and
Diaz-Rodriguez, N., Continual learning for robotics: Definition,
framework, learning strategies, opportunities and challenges.

Information fusion, 2020.


http://robots.stanford.edu/papers/thrun.lifelong-learning.ps.gz

Continual Learning Challenges in Practical Applications

A self-driving car adapting to
different environments (from a

country road to a highway to a city)




Continual Learning Challenges in Practical Applications

Conversational agents adapting to

different users, situations, tasks

—
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What can i help

you with?




Continual Learning Challenges in Practical Applications

Medical applications:

adapting to new patients, hos+=

uuuuu

conditions
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Continual Learning Challenges in Practical Applications

Multi-game environments

(e.g. OpenAl gym)




Example: Never-Ending Language Learner (NELL)

Mitchell et al, Never-Ending Learning, AAAI-2015 http://rtw.ml.cmu.edu/rtw/
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Challenge: Catastrophic Forgetting (mccoskey and conen, 1989)

“...the process of learning a new set of patterns suddenly and completely erased a
network’s knowledge of what it had already learned.” (French, 1999)

CF was identified by (McCloskey and Cohen, 1989): i learned I learned I learned

a new a new a new

Skill! skill! skill!

e A neural net trained with backprop learned a set
of “one’s addition facts” (i.e., the 17 sums 1+1
through 9+1 and 1+2 through 1+9)

e Then the network learned the 17 “two’s addition
facts” (2+1 through 2+9, 1+2 through 9+2).

e Within 1-5 two’s learning trials, accuracy on task
1 had dropped from 100% to 20%, in 5 more
trials, to 1%; by 15 trials, to 0%.

McCIoskey, M. and Cohen, N.J., 1989. Catastrophic interference in connectionist networks: The sequential learning problem. In Psychology of
“learning and motivation (Vol. 24, pp. 109-165). Academic Press.

French, R.M., 1999. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3(4).
b



More Generally: Stability vs Plasticity (camenterand Grossberg, 1987)

Plasticity <= ability to adapt to a new task
Stability <=> ability to retain the learned skills on the old tasks

“Catastrophic interference is a radical manifestation of a more general
problem for connectionist models of memory — in fact, for any model
of memory — the so-called “stability-plasticity” problem [1,2]. The
problem is how to design a system that is simultaneously sensitive to,

_but not radically disrupted by, new input.” (French, 1999)

[1] Grossberg. S. (1982) Studies of Mind and Brain: Neural Principles of Learning, Perception, Development, Cognition, and Motor Control.
[2] Carpenter, G. and Grossberg, S. (1987) ART 2: Self-organization of stable category recognition codes for analog input patterns.




Brief History: CL in Neural Networks

- Survey on
Stability- Semi- Rehearsal “Catastrophic
Plasticity distributed (replay) & forgetting in
(Carg?enter representations pseudo- connectionist
(French) rehearsal networks” Recent
Grossberg) (Robins) (French) work on
1949 1990 1993 1997 2013 (of
1987 1991 1995 1999
o . - ) “An empirical
Sensitivity- Catastrophic  Pre-training o Pseudo investigation of
Stability forgetting (McRae & robot recurrent catastrophic
(Hebb) (McCloskey Hetherington) learning (“dual”) forgetting in
7/ & (Thrun & | networks a la gradient-based
Cohen: _ neural networks
Ratcliff Mitchell) | neocortex/ (Goodfellow et al.)
hippocampus
(French)


http://robots.stanford.edu/papers/thrun.lifelong-learning.ps.gz
http://robots.stanford.edu/papers/thrun.lifelong-learning.ps.gz
http://robots.stanford.edu/papers/thrun.lifelong-learning.ps.gz

Inspirations
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Neuroscience
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Synaptic Plasticity Regulation for Retaining Knowledge

Learning -> enlargement of (some) dendritic spines -> Two-photon data

. _ (structural imaging)
decreased plasticity of the corresponding synapses.

(Cichon&Gan, 2015; Yang et al., 2009)

Hassabis et al (2017).

p - . Neuroscience-inspired
Persistent change (months), despite learning new tasks. artificial intelligence.

If these changes removed via synaptic optogenetics, the

task is forgotten (Hayashi-Takagi et al., 2015).

/ h iInspiration for Elastic Weight Consolidation (EWC), Synaptic Intelligence (Sl) and
ther regularization methods for preserving task-important weights.




Complementary Learning Systems and Experience Replay

CLS theory (McClelland et al. 1995): Complementary Leaming Systems (CLS) theory
Hippocampus Neocortex
e hippocampus: fast (one-shot) learning of episodic
] . . . Episodic o
information, consolidated to the neocortex in Memory Generalization
sleep (or resting periods) via “replay” of neural S— o E—
o o o 0 . ast learning ow learning
activity patterns associated with the episode of arbitrary e of structured

information knowledge

e neocortex: slow learning of structured knowledge;

efficient representation for generalization. ~aliel @t els (ZUTs)] Comtiuse 172 eng

learning with neural networks: A review.

'fn Inspiration for rehearsal/pseudo-rehearsal (Robins, 1995), pseudo-recurrent (“dual”)
networks (French, 1997) and many modern experience replay methods.




Structural Plasticity via Neurogenesis

Adult neurogenesis: generation of new neurons in
adult brains throughout life, balanced by death of
unused neurons (“use it or lose it”)

In humans, it occurs primarily in the dentate gyrus

of the hippocampus

Increased neurogenesis is associated with better

~ adaptation to new environments.

PAN inspiration for adaptive, expanding neural architecture methods.




Supervised
Continual
Learning




Supervised Continual Learning

Non-stationary data comes one example at a time in a stream: 8l ur data is locallyiid. - samples for a task are drawn from the
same unknown joint probability distribution x;, y;~P;(x, y).
(1, Y1, b)s o (63 Vit s (Xt i o L)

Standard Continual Learning
Supervised Learning

Training
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Prediction

. Continual learning: A comparative study on how to defy forgetting in classification tasks, 2019.



Continual vs Multi-Task Learning

Multi Task Learni - '
e Learning of multiple related

tasks offline, simultaneously

Qo |
£
£
o
—
=

Using a set or subset of
shared parameters

No continual model adaptation

Im%e*credit: de Lange et al. Continual learning: A comparative study on how to defy forgetting in classification tasks, 2019.



Continual vs Transfer Learning

Transfer Learning

Help learning the target task
using model trained on the
source task

oo!
£
=
@ |
LI
|

: : No continuous adaptation after
\ I ,/' learning the target task

Performance on the source
task(s) is not taken into account

Im%e*credit: de Lange et al. Continual learning: A comparative study on how to defy forgetting in classification tasks, 2019.



Continual Learning vs Domain Adaptation

Domain Adaptation Transfer learning with same

source and target tasks, but from
different input domains

opo!
=
=
© |
—
=

Trains on the source domain,
adapts model to the (with no
or only a few labels).

Unidirectional;: does not involve
any accumulation of knowledge

Imgge credit: de Lange et al. Continual learning: A comparative study on how to defy forgetting in classification tasks, 2019.



Continual vs Meta-Learning

Meta Learning

Faster adaptation on a task

given a large number of

eT0)
=
=

(O

—
—

training tasks

Offline training: a set of training

tasks available at the same

time

Im%écredit: de Lange et al. Continual learning: A comparative study on how to defy forgetting in classification tasks, 2019.



Continual Learning Settings

X —input vector
Y —class label

T —task (context) defines P(X,Y|T)

Task ID observed at training:
T observed at test: task-incremental CL

T not observed at test: class-incremental or domain-incremental CL

Task ID/boundary is not known at training:

» Task-agnostic CL




Task-Incremental CL

* Models are always informed about which task needs to be performed (both
at train and test time)

* The easiest continual learning scenario; possible to train models with
task-specific components

* A typical NN architecture: "multihead” output layer - each task has its own
output units but the rest of the network may be shared between the tasks

_,-,;h,,;ﬁ-Assumptions: y(t)} # {y(H'l)}

Hsu et al (2018). Re-evaluating continual learning scenarios: A categorization and case for strong baselines.

W



Task-Incremental CL

I Task-Incremental Learning (or multi-head setting)

Q Task
T

“\ Task boundary or task label

Training

[| Figure credit: Massimo Caccia




Class-Incremental CL

* Models must be able not only to solve each task seen so far, but also to

infer which task they are presented with.

* Includes protocols in which new classes need to be learned incrementally.

An example: sequentially learning MNIST digits (split-MNIST)
P(X%) # P(x" )

{y = Leral)
P(YW) # P(Y¥TY)

Hsu et al (2018). Re-evaluating continual learning scenarios: A categorization and case for strong baselines.

* Assumptions:

4P



Class-Incremental CL

I Class-Incremental Learning (or shared-head setting)

@ (T
Task boundary . . . Y ‘

\ \ \ .
\ \ \ -
\ \ \ =
\ \ \ :

\ \ \ .

\ \ \ .

Training Test ‘

Figure credit: Massimo Caccia




Domain-Incremental CL

* Task identity is not available at test time

* Models however only need to solve the task at hand; they are not required
to infer which task it is

* Typical examples of this scenario: the structure of the tasks is always the
same, but the input-distribution is changing (e.qg., ‘permuted MNIST’)

P(XM) £ P(XTHD)

o Assumptlons: similar to {y r } - {y g }
class-incremental, except for last one:

p(y(t)) - p(y(t+1))

Hsu et al (2018). Re-evaluating continual learning scenarios: A categorization and case for strong baselines.

.



Example: Split MNIST

0]/ 719

first second first second first second first second first second
class class class class class class class class class class

Figure 1: Schematic of the split MNIST task protocol.

Table 1: The split MNIST task protocol according to each continual learning scenario.

Incremental task learning With task given, is it the first or second class? (e.g., ‘0’ or ‘1)

With task unknown, is it a first or second class?
(e'g., in [‘0,,‘2’,‘4’,‘6’,‘8,] or ln [‘l’,‘3’,‘5,,‘7,,‘9’])
Incremental class learning With task unknown, which digit is it? (choice from ‘0’ to 9’)

Incremental domain learning

" Gido van de Ven and Andreas S. Tolias. Three scenarios for continual learning. arXiv:1904.07734, 2019




Example: Permuted MNIST

Task 1 Task 2 Task 10

(permutation 1) (permutation 2) (permutation 10)

Figure 2: Schematic of the permuted MNIST task protocol.

Table 2: The permuted MNIST task protocol according to each continual learning scenario.

Incremental task learning Given permutation X was applied, which digit is it?

Incremental domain learning  With permutation unknown, which digit is it?

Incremental class learning Which digit is it and which permutation was applied?

Gido van de Ven and Andreas S. Tolias. Three scenarios for continual learning. arXiv:1904.07734, 2019




Task-Agnostic CL: Most Challenging

Task identity is not available even at training time!
I Task Agnostic CL

Q Task
‘\

Task boundary

Training

Figure credit: Massimo Caccia




Towards A Unified Framework for Continual Learning?

Caccia, M et al (2020) Online fast adaptation and knowledge accumulation (OSAKA)

Meta-Continual Learning

= Task-agnostic setting A AN

= Combines continual-meta [1] and
meta-continual [2] learning

.
u C O n t I n U a | = M / \ M L . I Faster Remembering (or Continual-Meta Learning)
.
{ | Task

an online extension of MAML

[1] He et al. Task agnostic continual learning via meta learning. 2019
[2] K. Javed and M. White. Meta-learning representations for continual learning. 2019.



https://proceedings.neurips.cc/paper/2020/hash/c0a271bc0ecb776a094786474322cb82-Abstract.html

Objective

Data (X®), Y®)) is randomly drawn from distribution D(*),
with X®) a set of data samples for task ¢, and Y the
corresponding ground truth labels. The goal is to control
the statistical risk of all seen tasks given limited or no access
to data (X®), Y®)) from previous tasks t < T

Continual Learning

Training

-
> Exw yon [ fo(xH;6), YO)]
=1

(=
O
=
el
T
[T
okl
(-

However, we have no access to the previous tasks,

and thus cannot compute this empirical risk exactly.




The Curse of Catastrophic Forgetting

train A ~ train B

1.0

0.8
Frac. correct

Standard learning methods such as SGD quickly “forget” old knowledge
(parameters) when the data/task change (i.e., adapt too well).

Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks, PNAS 2017.



Multi-Task Gradient Dynamics: Tug-of-War

41 # 4

21 7 2

|
£ 0{\Task 1 solution \ £ 01 Task 1 solution wTaSk 2 solution £ 01 Task1solution ®
A \ " /
“ |

=21

w

Loss(Task1) Loss(Task2) Loss(Task1) +Loss(Task2)

However, the tasks are not available simultaneously in CL!

- Need to use some form of memory, or to modify the gradients, to still take into
account what solutions are good for previous tasks

Image credit: Hadsell et al. Embracing Change: Continual Learning in Deep Neural Networks, 2020.



Transfer vs Interference

Transfer from task A to task B <=> improved performance on B after learning A
Interference = negative transfer (i.e., decrease in performance)
Weight-sharing can cause both < finding a good trade-off is the key!

Transfer - Interference Trade-off
Stability — Plasticity Dilemma

Old Current Future
Learning Learning Learning

. 2 ° T : y -~
e .
Transfer _." Transfer .\

Sharing Sharing

N

Interference Interference

PAST FUTURE

Stability - Plasticity Dilemma

The reason for catastrophic
forgetting is “the very thing
— a single set of shared
weights — that gave the
networks their remarkable
abilities to generalize and
degrade gracefully.”

(French, 1999)



Possible Scenarios in CL

) Lack of stability (forgetting) ®) Lack of plasticity

Performance |
\
Performance ;

— EIN_ <

Time (Taski ) Tme (Taski]  (Taskz)

«y, Stability and plasticity Stablllty+ p05|t|ve) forward

Performance i
|

@
o
—
©
£
S
=
D
a-

l
=
0

L = [
Time (Taskz ]

Both (positive) backward
and forward transfer |

Time Task 1 ] |Task2

Image credit: Hadsell et al. Embracing Change: Continual Learning in Deep Neural Networks, 2020.



Transfer vs Interference (“Negative Transfer”)

Riemer et al (2019) Learning to Learn without Forgetting By Maximizing Transfer and Minimizing Interference

OL(z;,y:) OL(z;,y;)
Transfer: 0 90

« When we train on one we improve on the other (a form of generalization)
« Analogous to positive transfer in either the forward or backward direction

>

OL(xi,yi) OL(xj,y;)
Interference: 00 a6

« When we train on one we get worse at the other
"« Analogous to negative transfer in either the forward or backward direction

< 0.




Continual Learning Methods

e

Replay
methods

Memory-based

Maintain a subset of
(representative) samples
from previous tasks (raw
samples or pseudo-samples
— e.g., use a generative
model).

Replay: reuse these

samples as additional inputs
in the future, or use them to
constrain the new task loss.

Regularization-based
methods

No (explicit) memory

Instead, add regularization
term to the loss function,
consolidating previous
knowledge when learning
on new data.

Better for privacy,
minimizing memory size
and access latency.

Parameter isolation
methods

Architecture-based

Each task will use
different model
parameters (no
forgetting!). Can use a
static architecture or
keep expanding it.

How will the overall
performance scale with
the model size?

de Lange et al. Continual learning: A comparative study on how to defy forgetting in classification tasks, 2019.



Replay Rehearsal methods:

methods

e e retrain current model on a subset of stored

Rehearsal Pseudo Constrained
| Rehearsal |

samples jointly with new tasks (e.g., reservoir

iCaRL [16] | GEM [51] sampling [43])
ER [45] DGR [12] A-GEM [6]
SER [46 PR [48 GSS [44
TEM[[47]] CCLUéM]Hg] = Pseudo rehearsal methods:

LGM [50]

Feed random input to previous models, use

Constrained optimization: the output as a pseudo-sample [48].
Generative models are also used but add

Minimize interference with old tasks training complexity.
by constraining updates on the new task.

E.g., GEM, in task-incremental setting, projects the estimated gradient direction on the feasible
region determined by previous task gradients, etc. More recent work (A-GEM, MER, etc).

de Lange et al. Continual learning: A comparative study on how to defy forgetting in classification tasks, 2019.



Example: Replay + Constraints (GEM)

Lopez-Paz and Ranzato (2017). Gradient episodic memory for Continual Learning.

(1) store small amount of data per task in memory

ldea:
(2) when making updates for new tasks, ensure that they don’t unlearn previous tasks

How do we accomplish (2)?
learning predictor y, = fy(x;,, z,) memory: 4, for task z

Fort =0,...,.T

minimize £( fo( - ,z) , (X, Y,) )
subjectto L( fy, ;. ) < L( . é_l s My YTorall g, < z

(i.e. s.t. loss on previous
tasks doesn’t get worse)

Assume local <g,,gk> = < PLEAC R, ), ( fe@Zg s )> >0 forallz <z

linearity: 00
Can formulate & solve as a QP.

Lopez-Paz & Ranzato. Gradient Episodic Memory for Continual Learning. NeurlPS'17




Lopez-Paz and Ranzato (2017). Gradient episodic memory for Continual Learning.

Experiments

MNIST permutations MNIST permutations

0.8 N single
ndependent

0.6

mmm multimodal
0.4 . FWC
0.2 s GEM

-0.2

Problems:

- MNIST permutations

- MNIST rotations

- CIFAR-100 (5 new classes/task)

classification accuracy

ACC BWT FWT 8 10 12 14 16 18 20
MNIST rotations MNIST rotations

B single
independent

B multimodal

. FWC

s GEM

m - . -

BWT FWT 0 2 4 6 8 10 12 14 16 18 20

BWT: backward transfer,
FWT: forward transfer

classification accuracy

CIFAR-100 CIFAR-100

I single
independent

Em iCARL

. EWC

N GEM

Total memory size:
5012 examples

classification accuracy

8 10 12 14 16 18 20




Meta-Experience Replay (MER) Approach

Riemer et al (2019) Learning to Learn without Forgetting By Maximizing Transfer and Minimizing Interference

Standard offline training objective with dataset D:

0 =arg mein E(%y)eD [L(a:, y)]a

Modifying it to also learn to maximize transfer and minimize
interference in either direction:

Meta-learning perspective: we would like to learn to learn each
example in a way that generalizes to other examples from the
overall distribution.




Replay + Meta-Learning: Meta-Experience Replay

Reptile [1] is an efficient meta-learning algorithm that approximates the same objective as MAML.

Reptile can be extended to continual learning by integrating with ER! ©
v" Results from [1] still hold to the extent that our buffer captures the full variation of the distribution of examples seen.
v’ We can separate an ER batch into SGD steps over individual examples and apply a Reptile parameter meta-update.

v’ We also note that it is important to prioritize the current example before moving on as it may not be added to M.

Approximate Objective (s batches w1thkexamples each) _— e
i—1 7—1

. : ()L(I,] l/1,) ()L(I(r~1/qr)l
0 = (”-gnl‘)ln]E(J‘ll-!/ll) (xTsk,ysk)E \1 : :Z L(I” U”)l ZZ : -

i=1 j=1

Retained Accuracy After Training on All Tasks

MNIST MNIST Many Incremental
Buffer Size Rotations Permutations Permutations Omniglot
Online 46.40 + 0.78 55.42 + 0.65 32.62 +0.43 4.36 + 0.37

EwC N/A 57.96 +1.33 62.32+1.34 33.46 + 0.46 4.63 +0.14

GEM 5120 87.12 £ 0.44 82.50 £ 0.42 56.76 + 0.29 18.03 £ 0.15
500 72.08 +£1.29 69.26 + 0.66 32.14 +£ 0.50 =
200 66.88 + 0.72 55.42 +£1.10 - -

5120 89.56 + 0.11 85.50 £ 0.16 61.84 + 0.25 75.23 + 0.52

500 81.82 + 0.52 77.40 + 0.38 47.40 £ 0.35 32.05 £ 0.69
200 77.24 + 0.47 72.74 + 0.46 - -




Episodic (exact) vs Generative Replay

van de Ven et al (2020). Brain-inspired replay for continual learning with artificial neural networks

From: Brain-inspired replay for continual learning with artificial neural networks

b Main model .
Q

e T e
New data Exact replay

a Exact or experience replay, which views the hippocampus as a memory buffer in which experiences can simply be stored, akin to traditional views of

Generative replay

episodic memory”’778. b Generative replay with a separate generative model, which views the hippocampus as a generative neural network and replay as a

generative process®%7°.

Novel GR method: internal or hidden representations are replayed that are generated
By the network’s own, context-modulated feedback connections.

SOTA performance on challenging CL benchmarks with many tasks (=100) or complex
inputs (natural images) without storing data



Regularization-based
methods

/\

Prior-focused Data-focused

| |

EWC [24] LwF [54]

IMM [25] 1LEL [55]
SI [52] EBLL [9]
R-EWC [53] DMC [56]
MAS [13]
Riemannian
Walk [14]

Add regularization term to the
loss function, consolidating
previous knowledge when
learning on new data.

Data-focused:

Knowledge distillation from a previous
model (trained on a previous task) to the
model being trained on the new data.

Prior-focused:

Use an estimated distribution over the
model parameters as prior when learning
from new data; penalize changes to
parameters important for the past tasks
(e.g. EWC and later work).

de Lange et al. Continual learning: A comparative study on how to defy forgetting in classification tasks, 2019.



Elastic Weight Consolidation (EWC)

[Kirkpatrick et al, PNAS 2017]

— Low error for task B - EWC

S— L2 7
== Low error for task A e aRanalEy ldea: Don't let

iImportant parameters
change drastically
(reduce plasticity)

A\ , ® Inspired by research
L(0) =Lp(O) + Z §F1(91 —024,:)7, on synaptic
i ' consolidation

Task B Loss

Slide credit: ICML 2019 Tutorial on Never-Ending Learning by Tom Mitchell and Partha Talukdar


https://icml.cc/Conferences/2019/Schedule?showEvent=4337

Elastic Weight Consolidation (EWC)

[Kirkpatrick et al., PNAS 2017]

train A train B train C
1.0 + ) EWC

f 2 - L2 is too rigid, doesn't
I P ey, 0 :
0.8 1 | | » . 7 allowlearning on new
1.0 - | : s/ tasks => parameter
" weighting is important

0.8 4
1.0

0.8 - ' 1 Catastrophic
Frac. t i I
E e ERIERS Training time Forgettmg in SGD

MNIST experiments. New tasks
are random pixel permutations.

Slide credit: ICML 2019 Tutorial on Never-Ending Learning by Tom Mitchell and Partha Talukdar


https://icml.cc/Conferences/2019/Schedule?showEvent=4337

Parameter isolation
methods

/\

Fixed Dynamic
Network Architectures

PackNet [57]
PathNet [27]
Piggyback [58]
HAT [59]

PNN [60]
Expert Gate [5]
RCL [61]
DAN [17]

ldea: avoid forgetting by using
different parameters for each task

Best-suited for: task-incremental setting,
unconstrained model capacity,
performance is the priority.

Fixed Network Methods:

Network parts used for previous tasks
are masked out when learning new tasks
(e.g., at neuronal level (HAT) or at
parameter level (PackNet, PathNet)

Dynamic Architecture Methods:

When model size is not constrained:
grow new branches for new tasks,
while freezing previous task
parameters (RCL), or dedicate a model
copy to each task (Expert Gate), etc.

de Lange et al. Continual learning: A comparative study on how to defy forgetting in classification tasks, 2019.



Example: Architectural Approaches

Lee at al (2020) A Neural Dirichlet Process Mixture Model for Task-Free Continual Learning. ICLR2020

Sleep if
STM is full

Train a new expert

(a) Training (b) Inference




Neurogenetic Autoencoder (Online Dictionary Learner)

Garg et al (2017) Neurogenesis-inspired dictionary learning.

/output X' <>
() reconstructed X

* A sparse autoencoder model (a.k.a.
dictionary learning)

 Neuronal “birth”. adding random N
hidden units X

* Neuronal “death” using I11/12 (group
sparsity) regularize

‘dictionary’ D
hidden nodes ¢
<> encoded X

— Dol 4+ Acflally  + /\gg:lldjllz +§j:>\j||dj||1

sparsity on codings

—_————

reconstruction error L1/Ly group sparsity sparse element



https://arxiv.org/abs/1701.06106

“Neurogenesis” Helps CL

Garg et al (2017) Neurogenesis-inspired dictionary learning.

From urban
(“Oxford”)
to nature
(flowers,
dogs,cats)
images

-

o
®

o
o

0.4

%/%./%/%/W

—NODL
—©-ODL

Pearson correlation (true, predicted)
o
()

o
o

100 200 300 400 500 200 300
Final dictionary size k Final dictionary size k

Neurogenetic Online Dictionary Learner (NODL) improves reconstruction accuracy over standard ODL on
BOTH old and new data (i.e. avoids forgetting while adapting), and learns more compact representations.


https://arxiv.org/abs/1701.06106

Role of CL: Evolving a “Library” of “Basis Functions” ?

DY
4 \
! ‘\_J_,/ Language
- \

| Reading
\/
vision

Network components <=> finite functional “basis”
Ui { h1(X) ) e hk(X)} |
- fi(x) f2(x) fs(x) ... f(x) ...

Infinite stream of changing environments and tasks

A
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Continual Reinforcement Learning

Khimya Khetarpal*, Matthew Riemer®, Irina Rish, Doina Precup (2020).
Towards Continual Reinforcement Learning: A Review and Perspectives.

Explicit Knowledge Retention Leveraging Shared Structure

S Environment

Shared Latent Knowledge Modularity & Composition

Agent-Environment Interaction
(Fig. from Sutton & Barto)

Distillation Based State Abstractions Focused

Rehearsal Based Skill Focused

Goal Focused

Auxiliary Task Focused

ocgen: A benchmark for procedurally
nerated set of environments to measure
generalization.

Continual Reinforcement Learning Approaches

Learning to Learn

Context Detection
Learning to Adapt

Learning to Explore

Bsuite: is a collection of
carefully-designed
experiments that
investigate core capabilities
of a reinforcement learning
(RL) agent.



Continual Reinforcement Learning

A Taxonomy of Continual RL Formalisms

n

Observation Reward Action
0€O0 reR a € A(t)

\ r(s,a,t)
p(s,at) F
State !

SES

[\

Degree of Non-Stationarity
(93}

Environment Stationary  Passive  Active Hybrid

Driver of Non-Stationarity




Drivers of Nonstationarity

Passive Non-stationarity: In passive non-stationary environments, we assume that the non-stationary
behavior (i.e. the evolution of tasks) does not depend on the behavior of the agent itself when
interacting with the environment.

1 E.g. "Hidden-Mode Markov Decision Processes for Nonstationary Sequential Decision Making”

71 The evolution of tasks depends on a stochastic function P(z'|z) as in without having to consider the
effects of our own changing policy on this distribution

Active Non-stationarity: In active non-stationary environments, we consider that the agent’s behavior
may have an impact on the nature of the non-stationarity in the environment.

1 Eg: Intrinsic motivation, curriculum learning

71 This setting is foundational to work studying intrinsic motivation or the agent setting its own
curriculum.

;‘2
/ Hybrid Non-stationarity: Combining both active and passive sources of hon-stationarity.



Continual Reinforcement Learning Approaches

7

—
Explicit Knowledge Retention

Leverage Shared Structure

——mol
Learning to Learn

Latent Parameter Storage -D[ Modularity & Composition Context Detection
Distillation Based ->: State Abstractions Focused Learning to Adapt
Rehearsal Based ": Skill Focused

Learning to Explore

Goal Focused




Explicit Knowledge Retention

1 Latent Parameter Storage

—[ Explicit Knowledge Retention ]

M ) |

Latent Parameter Storage

-b[ Distillation Based ‘

Rehearsal Based

_.[

Shared components: Ammar et al.,, 2014 : shared latent
basis that captures reusable components

Borsa et al, 2016: explicitly model a shared abstraction
of state-action space for multi-task setting

Prior representations: Rusu et al., 2016: provide
representations of networks trained on previous tasks

as inputs for subsequent tasks.

Kirkpatrick et al., 2017: store a prior about the extent
of past usage of each parameter during learning to
preserve important old knowledge

Single shared representation: Maurer et al. 2016,

extracted features for multiple tasks in a single low-
dim shared representation

D’Eramo et al. 2016 derived theoretical bounds for AVI
and APl showing that learning a shared representation
significantly decreases the error propagation.




et
NN

Explicit Knowledge Retention

1 Distillation Based

—[ Explicit Knowledge Retention ]

-b[ Latent Parameter Storage ]

{ -b[ Distillation Based | J

->[ Rehearsal Based ‘

Idea: Leveraging knowledge distillation which dates
back to Bucilua et al, 2006 and renewed interested
and success in Hinton et al. 2015

Distill knowledge from past policies when learning a new
task as in Rusu et al., 2015; Li and Hoiem, 2016; Riemer et
al,, 2016; Espeholt et al., 2018; Schwarz et al., 2018;
Berseth et al,, 2018; Kaplanis et al., 2019; Traoré€ et al,,
2019; Tirumala et al., 2019.

An additional benefit: ultimately learns a separate model
for each task.

However, this results in a need for a knowledge
compression strategy to scale truly to many many tasks.




|

Explicit Knowledge Retention

Rehearsal Based

Idea: Reinforce the importance of experiences from
the past distribution using experience replay
(Lin, 1992)

_[

Explicit Knowledge Retention

_.[

Latent Parameter Storage

Replay experiences can help correct the bias in o\ur
objective function towards the short term to the extent
that the past is a good proxy for the future.

A very successful approach for tackling continual RL as
shown in (Isele and Cosgun, 2018; Riemer et al., 2019;
Rolnick et al., 2019).

_.[

Distillation Based

_.[

Rehearsal Based

Replay might result in significant storage requirements,
and it is not always clear how to prioritize data in replay
(the length, the recency, rewards).

Besides they struggle to effectively leverage past data if
the shift in distribution is drastic.

Idea: replace replay with pseudo-rehearsals sampled
from a trained generative model of the environment.

Explored in Robins, 1995, Atkinson et al.,2018




A desired CRL Benchmark should allow for

a range of degrees of non-stationarity (from 1to 4)
training in progressive fashion

1 discovery and composition of skills

1 generate more complex tasks/scenarios with increasing
difficulty

1 learning casual relationships including affordances
associated with objects

1 embodied agents

1 rich parallel streams of data which are multi modal

i
W

E

On Evaluation of Continual RL Agents: Benchmarks

Procgen: A benchmark for
procedurally generated
set of environments to
measure generalization.



Open Problems and Challenges

1 Finding the right inductive biases

1 Task specification and formalism

1 Understanding the agent-environment boundary

1 Experimental design and evaluation 1i.e. training and testing
1 Interpreting discovered behaviors

1 Learning at scale — scaling laws for Continual RL?




Key Metrics for Continual RL

00D Cause-and-Effect

Generalization _ Reasoning
~._Planning

Returns /

Skill
Forward | | // | | | Composition
Transfer \/ ‘

Backward il /'/’Interpretability
Transfer : ~

Skill

. Random AgentA AgentB
Reusability
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CL and Neural Scaling Laws? https://youtu.be/V8FEFw50Ig4

Explaining Neural Scaling
Laws

Physics n ML 6.16.2021

Ethan Dyer

Based on 2102.06701 w/ Yasaman Bahri, Jared Kaplan, Jaehoon Lee, Utkarsh Sharma

. . : : ' ‘ '
A-ala
B2 I IECELIIET )) re -
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Neural Scaling Laws

Kaplan et al (2020). Scaling laws for neural language models.

—— L=(D/5.4+103)70.095 g —— L=(N/8.8+1013)70.076

Test Loss

L = (Cmin/2.3 - 108)~0.050
71075 107 107! 10! 108 5 107
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not

bottlenecked by the other two.

What aspects of models, algorithms and data have the largest effect on scaling laws?
& How can we design learning approaches with better scaling (e.g., scaling exponent)?




Can Scaling Solve Catastrophic Forgetting?

What is solved by scale, what is not?

Acc B

Acc A

ResNet pre-trained on ImageNet 21k: 26 50 101 152

[w/ Aitor Lewkowitz and Vinay Ramasesh)

> Pl o) 5027/1:17:51 «0 B & (= O 5] L3



Environment Complexity vs Model Capacity

A
3rd-generation ANNs?

- . \
lo) Expanding ANNs: NS
b= Space-time coding?
SO
P
e
v O Fixed-size ANNs
U O
S
o Q

Environment Complexity



Summary: Desirable Properties of CL Systems

*Constant memory (infinite data/task stream)

*No task boundary info

*Online learning (without offline training on large batches/tasks)
*Forward transfer (e.g., OOD generalization)

*Backward transfer (beyond not forgetting)

*Problem agnostic (e.g., not limited to classification)

*Adaptively learning from any partial data (e.g., semi-supervised)
* No test time oracle

. *Task revisiting to strengthen prior knowledge

~ -Graceful forgetting (compression) to balance stability and plasticity

.



Recent Surveys on Continual Learning

Hadsell et al. (2020)|Embracing Change: Continual Learning in Deep Neural Networks.

Khetarpal et al. (2020)ITowards Continual Reinforcement Learning: A Review and
Perspectives.

Mundt et al. (2020) A wholistic view of continual learning with deep neural networks:
Forgotten lessons and the bridge to active and open world learning.

De Lange et al. (2019) Continual learning: A comparative study on how to defy forgetting
in classification tasks.

Parisi et al. (2019) Continual lifelong learning with neural networks: A review.

,/ijchen & Liu (2018). Lifelong Machine Learning.

* Soltoggio et al. (2017) Born to learn: the inspiration, progress, and future of evolved
plastic artificial neural networks.



Thank you!
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Fthure Directions and Open
Challenges

Continual Learning with Deep Architectures
Tutorial @ ICML 2021 - Part 2

- Vincenzo Lomonaco -

University of Pisa & ContinualAl o
vincenzo.lomonaco@unipi.it




Vincenzo Lomonaco

Assistant Professor @
University of Pisa

Co-founding President and Lab
Director @ ContinualAl.org

Co-founder & Board Member @
AlforPeople.org



https://www.continualai.org/
https://www.aiforpeople.org/
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NELL: Never-Ending Language Learning

Key Ideas
e Semi-Supervised Learning System

e Ran 24x7, from January, 2010 to
September 2018

e Combination of many learning
algorithms (CPL, CML,SEAL,
OpenEval, PRA, NEIL)

e Intended as a case-study for a
never-ending agent

T. Mitchell et al. Never-Ending Learning. Communications of the ACM, 2018.

O

Knowledge Base
(latent variables)

Beliefs | Knowledge

Integrator

Orthographic URL specific
Context classifier HTML
patterns patterns
(CPL) (CML) (SEAL)

Actively Infer new

search for beliefs from classifier
web text old

(OpenEval) (PRA) (NEIL)

Ontology
extender

» (OntExt)




([ .

NELL: Never-Ending Language Learning -

NELL Architecture

Knowledge Base
e Semi-Supervised Learning System (latent variables)

Beliefs Knowledge

Integrator
Candidate

Orthographic URL specific
Context classifier HTML

patterns patterns
(CPL) (CML) ‘ (SEAL)

e Intended as a case-study for a Actively Infer new Ontology

never-endi ng agent search for beliefs from classifier extender
web text old

(OpenEval) | (PRA) ~ (NEIL) (OntExt)

T. Mitchell et al. Never-Ending Learning. Communications of the ACM, 2018.



O
NEIL: Extracting Visual Knowledge from Web Data ™
O

Key Ideas

(0) Seed Images
e Semi-Supervised Learning System

e Cumulative approach: not
incremental, SVM as main learning
algorithm

e  Feature: GIST, SIFT, HOG, Lab color
space, and Texton

e 2.5 months on 200 core cluster: 16
iterations, 400K self-labeled
instances, 1152 object, cateqories,
1034 scene categories

X. Chen et al. NEIL: Extracting Visual Knowledge from Web Data. ICCV, 2013.

O

(1) Visual Cluster
Discovery
(Section 3.1)

e
(5) Retrain

Detectors - T ;
(4) Add New Instances

(Section 3.3) i

Figure 2. Outline of Iterative Approach

oy
=
w
=
S
£
=
@
&
2
[ag)
)

Discovery
(Section 3.2)

Learned facts:
itor is a part of Desktop Computer
Keyboard is a part of Desktop Computer
* Television looks similar to Monitor




Lifelong Topic Modeling

Key Ideas

e  Traditionally an unsupervised learning
task.

e The "topics” produced by topic
modeling techniques are clusters of
similar words.

e Set of shared words among some topics
generated from multiple domains are
more likely to be coherent for a
particular topic.

e Focus: knowledge accumulation rather
than than learning an incremental
function

Algorithm 1 PriorTopicsGeneration( D)

1: forr =0to R do

2:  for each domain corpus D; € D do
3: if r = () then

4: S; «+ LDA(D;):

5 else

S; « LTM(D;, S);
end if
end for

S« U;S;;

10: end for

Algorithm 2 LTM(D", S)

1: A" « GibbsSampling(D*, (), N); // Run N Gibbs iter-
ations with no knowledge (equivalent to LDA).
: fori =1to N do
K* « KnowledgeMining(A*, S);
A"« GibbsSampling(D*, K*, 1); // Run with
knowledge K*.
: end for

Z. Chen et al. Topic modeling using topics from many domains, lifelong learning and big data. ICML, 2014.
P. Gupta et al. Neural topic modeling with continual lifelong learning. ICML, 2020.




Continual Unsupervised Learning

Experiences

time

Supervised Learning Unsupervised Learning

examples examples




Continual Unsupervised Learning

Ideal Paradigm to Combine
with CL

e No Continual Labeling
e Less Bias
e  Why this is still not the case?
o  Changing the paradigm:
More Data, Less

Supervision

o Less impactful
applications (for now)

# "Pure” Reinforcement Learning (cherry)
» The machine predicts a scalar
reward given once in a while.

» A few bits for some samples

# Supervised Learning (icing)
» The machine predicts a category
or a few numbers for each input
» Predicting human-supplied data
» 10-10,000 bits per sample

# Unsupervised/Predictive Learning (cake)

» The machine predicts any part of
its input for any observed part.

» Predicts future frames in videos
» Millions of bits per sample

# (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)
Y. LeCun, NeulPS 2016



Ll .
. . . . O .
Continual Unsupervised Representation Learning ™
O

Key Ideas
e Fully Generative Approach

e Yy can beinterpreted as
representing some discrete
clusters in the data

e Mixture of Gaussian with

X X Figure 1: Graphical model for
Dynamic Expansion CURL. The categorical task X

variable y is used to instantiate X X
a latent mixture-of-Gaussians Figure 2: Diagram of the proposed approach, showing the

° Difficult to scale: tested only z, which is then decoded to x. inference procedure and architectural components used.

on MNIST and Omniglot

]
O

D. Rao et al. Continual Unsupervised Representation Learning. NeurlPS 2019.



Continual Unsupervised Learning -

Huge Exploration Opportunities

Predict any part of the input from any

e Self-Supervised Learning

other part.

e Sequence Learning Predict the from the past.

o ComiEsive JeErming Predict the from the recent past.

e Hebbian-like Learning

e  Active Learning Predict the from the present. @

e  Weakly/Semi-Supervised Predict the from the bottom. 4

Learning . o ' f @

Predict the occluded from the visible .

(] Randomized Networks Pretend there is a part of the input you «— Past Future —

don’t know and predict that. Present Slide: LeCun

]

| S. Zhang et Al. Self-Supervised Learning Aided Class-Incremental Lifelong Learning. CLVision Workshop Findings at CVPR, 2021.
J. Gallardo et Al. Self-Supervised Training Enhances Online Continual Learning. arXiv, 2021.



Continual Unsupervised Learning -

Huge Exploration Opportunities

e Self-Supervised Learning
one to one one to many many to one many to many many to many

e Sequence Learning

ppe—— | [ [[] 1 JOL UL

104 000 D000 4K

t

e Hebbian-like Learning
e Active Learning

e  Weakly/Semi-Supervised

i
0 U 000 ooo oo

Learning

e Randomized Networks

:I Y. Cui et al. Continuous online sequence learning with an unsupervised neural network model. Neural Computation, 2076.
| A. Cossu et Al. Continual Learning for Recurrent Neural Networks: an Empirical Evaluation. Elsevier Neural Networks, 2021.
B. Ehret et Al. Continual learning in Recurrent Neural Networks. ICLR 2021.



Continual Unsupervised Learning -

Huge Exploration Opportunities Pull together - Push apart

embeddings C——J

e Self-Supervised Learning

.
e Sequence Learning
e Contrastive Learning X 1
e Hebbian-like Learning
e Active Learning
e  Weakly/Semi-Supervised

Learning

e Randomized Networks Figure 1

Junnan Li, 2020

]

. M. Zheda et al. Supervised Contrastive Replay: Revisiting the Nearest Class Mean Classifier in Online Class-Incremental Continual Learning. CLVision Workshop at CVPR 2021.
C. Hyuntak et al. CO2L: Contrastive Continual Learning. arXiv, 2021.


https://blog.einstein.ai/prototypical-contrastive-learning-pushing-the-frontiers-of-unsupervised-learning/

Continual Unsupervised Learning -

Huge Exploration Opportunities Gradient-based optimization and tug-of-war dynamics

e Self-Supervised Learning

. Continual Learning is a huge challenge for deep learning
° Seq uence Learning models because of gradient-based optimization.

1 1 Gradient-based learning is effective and cheap, the de rigeur
° Contrastive Learmng method for training neural networks for close to 4 decades.

e Hebbian-like Learning However, a close look at the learning dynamics reveals a
problem.

¢ Active Learnlng Each training sample produces a gradient for each parameter

. . in the network that votes to make the parameter bigger or
e  Weakly/Semi-Supervised amnalloe

Lea rning In a mini-batch, a gradient is producgd by each ;amplg in A
parallel and they are summed to decide the winning direction.

e Randomized Networks The result is a tug-of-war over the direction of change of
each parameter.

R. Pascanu, 2021

]

|| G. Parisi et al. Lifelong learning of spatiotemporal representations with dual-memory recurrent self-organization. Frontiers in neurorobotics, 2018.
P. Bashivan et al. Continual learning with self-organizing maps. CL Workshop at NeurlPS 2018



Continual Unsupervised Learning -

Huge Exploration Opportunities

e Self-Supervised Learning
e Sequence Learning

e Contrastive Learning

e Hebbian-like Learning

e Active Learning

e  Weakly/Semi-Supervised ; g : e 4 ';J ; g ; ‘;' E 7; @ S
. R4 »:_ R - : “ n‘_;.'\—‘ : - |4 : “ R
Learning cs WA by g ! 4 ‘QJ M'N ) VIR A1 SN

e Randomized Networks , ‘ ‘ ,1 ,‘ , T ,‘

]

[ | L. Pellegrini et al. Continual Learning at the Edge: Real-Time Training on Smartphone Devices. ESANN, 2021.
R. Camoriano et al. Incremental robot learning of new objects with fixed update time. ICRA, 2017.


http://www.youtube.com/watch?v=HdmDYIL48H4

Continual Unsupervised Learning -

Huge Exploration Opportunities . . .
Semi-Supervised Tuning from

Temporal Coherence

Self-Supervised Learning

e Sequence Learning Video Stream DL Model
e Contrastive Learning %

\._
e Hebbian-like Learning “&
e Active Learning
e Weakly/Semi-Supervised

Learning

Class 0.1 | 0.01 | 056|003 | 02 | 02

e Randomized Networks Probabilities {
0.05 | 0.06 | 0.7 | 0.05 | 0.04 | 0.1

]

[ | Lomonaco V. and Maltoni D. Semi-Supervised Tuning from Temporal Coherence. ICPR 2016.
L. Wang et al. Ordisco: Effective and efficient usage of incremental unlabeled data for semi-supervised continual learning. CVPR 2021.



Continual Unsupervised Learning -

Huge Exploration Opportunities

Training: Supermasks Inference: Supermasks in Superposition
!

° Self-Su perVised Lea rning Supermask 1 Supermask 2 Supermask 3

_ Q Q 00
e Sequence Learning

e Contrastive Learning QOO = OO0 O =m
e Hebbian-like Learning XX !
000 000

1 4 t 4
. . ‘ . i . Data from Maximize
) ' 1 T unknown task confidence

Figure 1: (left) During training SupSup learns a separate supermask (subnetwork) for each task.
(right) At inference time, SupSup can infer task identity by superimposing all supermasks, each
" Randomized Networks weighted by an «;, and using gradients to maximize confidence.

e Active Learning
e  Weakly/Semi-Supervised

Learning

M. Wortsman, 2020

]

| A. Cossu et al. Continual Learning with Echo State Networks. ESANN 2021.
M. Wortsman et al. Supermasks in superposition. NeurlPS 2020.



Continual Unsupervised Learning -

Other relevant works in this area

e A. Bertugli et al. Few-Shot Unsupervised Continual Learning through Meta-Examples. \Workshop on
Meta-Learning at NeurlPS 2020.

e |. Mufioz-Martin et al. Unsupervised learning to overcome catastrophic forgetting in neural
networks. |IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2019.

e L. Caccia et al. SPeCiaL: Self-Supervised Pretraining for Continual Learning, arXiv 2021.

e W.Sun et al. ILCOC: An Incremental Learning Framework Based on Contrastive One-Class
Classifiers. CLVision Workshop at CVPR 2021.

e J.He et al. Unsupervised Continual Learning Via Pseudo Labels. arXiv 2020.

e S.Khar et al. Unsupervised Class-Incremental Learning through Confusion. arXiv 2021.
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Applications
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Continual Learning Applications -

Main Possibilities

° Edge

o Embedded systems and Robotics: +privacy, +efficiency, +fast adaptation, +on the edge, -Internet
connection (e.g. Autonomous Cars, Robotics Arms/Hands)

° Cloud

o  AutoML and Cl systems for Al models: +scalability, +efficiency, +fast adaptation, -energy
consumption, -$$S (e.g. Recommendation Systems)

e Continuum Edge-Cloud

o Pervasive Al systems: Efficient Communication, fluid & dynamic computation
o Neural Patches: +security patches, +fairness patches, +fast update

o Continual Distributed Learning: understudied relationship with parallel and federated learning



On-Device Personalization without Forgetting

L. Pellegrini et al. Latent Replay for Real-Time Continual Learning, IROS 2020.

L. Pellegrini et al. Continual Learning at the Edge: Real-Time Training on Smartphone Devices. ESANN, 2021.

G. Demosthenous et al. Continual Learning on the Edge with TensorFlow Lite. arXiv 2021.

L. Ravaglia et al. Memory-Latency-Accuracy Trade-offs for Continual Learning on a RISC-V Extreme-Edge Node. SiPS 2020.



http://www.youtube.com/watch?v=Bs3tSjwbHa4

AR1: a Flexible Hybrid Strategy for CL

Output Layer (classes)

Class
specific
discriminative 4
features
(training at
full pace) External Storage

(replay patterns)

Latent
layer

Low-level
generic
features
(slow
training)

Input Layer (images)

Forward Pass (all patiems)

0
g
2
g
]
£
o
]
n
o
B
2
“

Conc

mini-batch level)

Backward

Figure 1: Architectural diagram of Latent Replay.

l

i

Key Ideas

Architectural, Regularization and Replay
components:

o CWR"* for the output layer (arch)
o  Online Synaptic Intelligence (reg)
o Latent Replay (replay)

Z'u =Lu+/1 Z.Q.l; (ék_ Hk)z
k

t 9L 96,
tu—lagk at
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D. Maltoni et al. Continuous Learning in Single-Incremental-Task Scenarios, Neural Networks, 2019.

L. Pellegrini et al. Latent Replay for Real-Time Continual Learning, IROS 2020.

V. Lomonaco et al. Rehearsal-Free Continual Learning over small I.1.D Batches. CLVision at CVPR 2020.




Continual Learning in Production

Business Logic

Business metrics
Costs
Business Metrics Desired accurat

AxPredicuon

. oy statistics
Joiner Data Monitoring Data Prediction  Prediction

Statistics i Statistics idori
Sketcher/| > Anomaly Detection, Model _Pollcy Monitoring
Sampler Engine

Distribution Shift

Measurement Accuracy, Shift

HPO
Trainer <—— Retrain

Model

Predictor

l Predictions

Predictions

Shared Infrastructure

Training Data | |Validation Data|| Diagnostic System State

Model DB Reservoir Reservoir || Logs | 2

Figure 1: Data flow in the Auto-Adaptive Machine Learning architecture. See text for details.

]
O

T. Diethe et al. Continual Learning in Practise. Continual Learning Workshop at NeurIPS 2018.



Use-Cases: Google Play and Tesla

Warm Starting

& YouTube ©3

DATA SOURCE

INACCURACY

DEPLOY

DATA ENGINE

= i UNIT TESTS

TRAIN

LABEL

0 i‘ Als

»@w\ns,

V. Lomonaco. Continual Learning for Production Systems: The new “Agile” in the Machine Learning Era. ContinualAl Publication, 2019.
D. Baylor et al. FX: A TensorFlow-Based Production-Scale Machine Learning Platform. KDD, 2017.

A.Karpathy. Building the Software 2.0 Stack. Spark+Al Summit, 2018.



Some Startups: Cogital, Neurala, Gantry “

GANTRY —

Cogitai is happy t6 announce that -
we are now pant'of Sony All " e

Data evolves. Build ML systems that adapt.

Visit Sony Al

Sony Al still supports Continua, our Reinforcement Learning platform. For more information, contact us at
info@coogitai.com.

Try Cor

Improve Quality Inspections
with Vision Al Software History

Cogitai was founded n 2015 by Mork Ring, Satinder Singh, and Pet re, leading Al innovators with o combined total of over 60 years of active research
N X - in des\gmng Al algorithms to and aciions rom experience, The company' founding purbose was (o moke Reiforcement Learning (),
Reduce product defects. I rates. Prevent downtime. and eventually Continual Learning, occessiote {0 o wide range of industriol applications. Cogitars Continua plotform represented the first stey

mpany’s vision by incorporating the best publicly available and proprietary RL algorithms into a scalable, easy-to-use SaaS platform.
ted to be able to continue its research and development efforts as a part of Sony Al
TALK WITH OUR EXPERTS

https://www.neurala.com
https://qantry.io
https://www.cogitai.com



https://www.neurala.com/
https://gantry.io/
https://www.cogitai.com/

Continual Learning Tools -

Research & Development Tools

e V.Lomonaco et al. Avalanche: an End-to-End Library for Continual Learning. CLVision Workshop at
CVPR 2021.

e A. Douillard et al. Continuum: Simple management of complex continual learning scenarios. CLVision
Workshop at CVPR 2021.

e S.|. Mirzadeh et al. CL-Gym: Full-Featured PyTorch Library for Continual Learning. CLVision
Workshop at CVPR 2021.

e F.Normandin et al. Sequoia: A Software Framework to Unify Continual Learning Research. CLVision
Workshop at CVPR 2021.



Avalanche for R&D

Benchmarks Training Models Evaluation Logging

Evaluator
<> <€©» Logger(s)

P1 '* *, Pm

]
O

V. Lomonaco et al. Avalanche: an End-to-End Library for Continual Learning. CLVision Workshop at CVPR 2021.



Avalanche for R&D

Avalanche Key Links

e Avalanche Official Website:
https://avalanche.continualai.orq

e Avalanche GitHub:
https://qithub.com/ContinualAl/avalanche

e Avalanche API-DOC.:
https://avalanche-api.continualai.or

e Avalanche ContinualAl Slack: #avalanche
channel

With Avalanche

import torch
from torch.nn import CrossEntropyloss
from torch.optim import SGD

from avalanche.benchmarks.classic import PermutedMNIST
from avalanche.extras.models import SimpleMLP
from avalanche.training.strategies import Naive

# Config
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# model
model = SimpleMLP(num_classes=10)

# CL Benchmark Creation

perm_mnist = PermutedMNIST(n_experiences=3)
train_stream = perm_mnist.train_stream
test_stream = perm_mnist.test_stream

# Prepare for training & testing
optimizer = SGD(model.parameters(), lr=0.001, momentum=0.9)
criterion = CrossEntropyloss()

# Continual learning strategy

cl_strategy = Naive(
model, optimizer, criterion, train_mb_size=32, train_epochs=2,
eval_mb_size=32, device=device)

# train and test loop

results = []

for train_task in train_stream:
cl_strategy.train(train_task, num_workers=4)
results.append(cl_strategy.eval(test_stream))

V. Lomonaco et al. Avalanche: an End-to-End Library for Continual Learning. CLVision Workshop at CVPR 2021.


https://avalanche.continualai.org
https://github.com/ContinualAI/avalanche
https://avalanche-api.continualai.org

Avalanche for R&D

replay = ReplayPlugin(mem_size)
ewc = EWCPlugin(ewc_lambda)
strategy = BaseStrategy(
model, optimizer,
criterion, mem_s1ize,
plugins=[replay, ewc])

]
O

V. Lomonaco et al. Avalanche: an End-to-End Library for Continual Learning. CLVision Workshop at CVPR 2021.
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Sustainable Al Principles

General Principles

Accuracy & Robustness

e Explainability, Transparency & Accountability
e Bias

e Fairness

e Privacy & Security

e Human, Social and Environmental Wellbeing

L. Royakkers et al. Societal and ethical issues of digitization. Ethics and Information Technology, 2018.
B.D. Mittelstadt et al. The ethics of algorithms: Mapping the debate. Big Data & Society, 2016.

A. Jobin et al. The global Iandscape of Al ethics guidelines. Nature Machine Intelligence, 2019.
https://www.aiforpeople.org/ethical-ai/



Continual Learning Impact -

...0On each Principle:

Accuracy & Robustness = Robustness & Autonomy, Continual & Fast Improvement
e Bias = CL as the new Agile: Bias Patches

e Fairness = Efficient Fairness Patches

e Privacy & Security = Security Patches

e Human, Social and Environmental Wellbeing = improved efficiency & scalability: less energy
consumption, CO2 emission; sustainable & “progressive” by design

e Explainability, Transparency & Accountability = Neuroscience-grounded, Human-centered Al

L. Royakkers et al. Societal and ethical issues of digitization. Ethics and Information Technology, 2018.
B.D. Mittelstadt et al. The ethics of algorithms: Mapping the debate. Big Data & Society, 2016.

A. Jobin et al. The global Iandscape of Al ethics guidelines. Nature Machine Intelligence, 2019.
https://www.aiforpeople.org/ethical-ai/
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Open Questions (1/2)

—_

Is it possible to learn robust, deep representations continually?
Are currently addressed scenarios and eval metrics enough?
What is the right level of supervision?

How to know what to forget and what to remember?

What's the relationship with concept drift?

Is replay a research direction worth pursuing?

Is computation more important than memory?

Is gradient descent the right algorithm to learn continually?

Continual Meta-Learning & Meta-Continual Learning: what's the right relationship?

© v ® N o U B W N

—_

What is the relationship with Sequence and Continual Learning?

N. Diaz-Rodriguez et al. Don't Forget, There is More than Forgetting: new Metrics for Continual Learning. CL Workshop at NeurIPS 2018.
A Prabhu. Gdumb: A simple approach that questions our progress in continual learning. ECML, 2020.



Open Questions (2/2)

1. Is curiosity important for continual learning?

2.  What about Curriculum Learning?

3. Compositionality is a key aspect of human intelligence: what to expect for CL
Systems?

4. Self-Reflection*: accuracy of learned functions, given only unlabeled data?

5. Self-reflection that can detect every possible shortcoming (called impasse) of the
agent”

6. (External) Knowledge and Reasoning*

...and much more!

*T. Mitchell and P. Talukdar. Never-Ending Learning. Tutorial at ICML 2019.
J.A. Mendez et al. Lifelong learning of compositional structures. ICLR 2021.



On the Future of CL (Short-Medium Term)

More Natural Scenarios

. Domain, Task and Class-Incremental

are not enough.
* Longer streams of “experiences”.
*  More metrics, focus on scalability.
Move towards unsupervised training
* Mostly Semi-Supervised,
Self-Supervised and Sequence
Learning.

Hybrid Continual Learning Strategies

Continual Learning Applications

Rehearsal Generative Replay

o Pure 7 BR \
Rehearsal ~ @ MeRGAN
(@) E)_cs‘fream @) Fea‘rNet
® ICARL/ . e GDM
@ GEM
o EWC / v \ / e CwRr

o SI I ® PNN
o LWF ) 4

Regularization — Architectural

T. Lesort et al. Continual Learning for Robotics: Definition, Framework, Learning Strategies, Opportunities and Challenges. Information Fusion, 2020.
G.l. Parisi et al. Online Continual Learning on Sequences. Studies in Computational Intelligence, 2020.



On the Future of CL (Long-Term)

1. Fundamentally a question of agent What should a theory of Learning Agents answer?
architecture”
might model learning agent A as tuple <S,E,M,F,G,L>
2. Two main paths for (deep) CL S = sensors
E = effectors

3. Neuroscience-Inspired it aPRBORAGE

M = set of memory units
G = graph specifying data flow among F, M, S, E
L = learning mechanism

b. Distributed Continual Learning

might model L as another agent L = <S ,E,M,F,G>
* where S, E, sense and act on Agent, especially its F, M, G

*T. Mitchell and P. Talukdar. Never-Ending Learning. Tutorial at ICML 2019.
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Conclusions

What we have seen

» Significant and growing Interest in the Iast few years on Continual learning within Deep Learning

» Significant improvements over standard benchmark but focus still mostly on simplified scenarios and
forgetting centered metrics.

* Huge space of possible and significant explorations.
Take-Home Messages

1. Continual Learning is a8 paradigm-changing approach trying to break the fundamental i.i.d. assumption in
statistical learning.

2. CL pushes for the next step in Neuroscience-grounded approaches to learning

3. CL pushes for the next generation of truly intelligent robust and autonomous Al systems: efficient, effective,
scalable, hence sustainable.



"We are not looking for incremental improvements in
- state-of-the-art Al and neural networks, but rather
paradigm-changing approaches to machine learning
that will enable systems to continuously improve
B based on experience.”

— Hava Siegelmann, 2018







Additional Resources (1/3)

Continual Learning with Deep Architectures

Vincenzo Lomonaco (University of Pisa & ContinualAl), Irina Rish (University of Montreal & MILA)

Tutorial @ ICML 2021

Mon Jul 19 08:00 AM -- 11:00 AM (PDT)

Official Tutorial Website: Slides,
Q&As, Recordings, etc.

Authors

Vincenzo Lomonaco Irina Rish

University of Pisa & University of
ContinualAl Montreal & MILA

V. Lomonaco, I. Rish. Continual Learning with Deep Architectures. |ICML Tutorial, 2021.


https://sites.google.com/view/cltutorial-icml2021

Seomtinuwal Al

A Non-profit Research Organization and Open Community on
Continual Learning for Al
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Additional Resources (2/3)

« ContinualAl Wiki: a shared and . .
collaboratively maintained Publications
knowledge base for Continual
Learning: tutorials, workshops,
demos, tutorials, courses, etc.

+ Continual Learning Papers: curated
list of CL papers & books with Search among 262 papers!

meta-data by ContinualAl
Filter list by keyword:

+ ContinualAl Forum + Slack:
discussions / Q&As about Continual
Learning

Filter list by regex:
Filter list by year:

e ContinualAl Research Consortium:
networks of Top CL Labs across the
world.

[framework]

You can find more at: www.continualai.org



https://wiki.continualai.org/
https://github.com/ContinualAI/continual-learning-papers
https://continualai.discourse.group/
https://www.continualai.org/research/
http://www.continualai.org

Additional Resources (3/3)

ContinualAl Publication: a curated list
of original blog posts on CL.

Continual Learning & Al Mailing List+:
curated list of CL papers & books with

meta-data by ContinualAl.

ContinualAl Newsletter:news from the
ContinualAl community and the CL
World in one place.

ContinualAl Seminars: weekly invited
talks on CL.

ContinualAl YouTube: collection of
videos about CL.

You can find more at: www.continualai.org

@

ContinualAl

A Non-profit Research Organization and ©pen Community on
Continual Learning for Al

ContinualAl
862 subscribers

HOME VIDEOS PLAYLISTS CHANNELS DISCUSSION ABOUT Q

ContinualAl: a Non-Profit Research Organization on Continu...

ContinualAl: a Non-Profit Research Organi... &

1,523 views * 2 years ago

ContinualAl is an official non-profit research organization and
the largest open community on Continual Learning for Al. We
aim at connecting people and working better together on this
fascinating topic we consider fundamental for the future of Al.

+ More about ContinualAl:
https://medium.com/continual-ai/cont

ra - Official website: https://www.continualal.org
> € 005/428 @ % I READ MORE

Uploads  » PLAYALL

@ Continualal

SUBSCRIBE
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https://medium.com/continual-ai
https://www.continualai.org/news/
https://www.continualai.org/news/
https://www.continualai.org/reading_group/
https://www.youtube.com/channel/UCD9_bqN3gX-TLxcr47vvMmA
http://www.continualai.org

[]

Continual Learning: On
Machines that Can Learn
Continually

1st Official Open-Access Course
on CL Offered by University of
Pisa & ContinualAl
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Join our Pervasive Al Lab!

PERVASIVE Al LAB

Teaching &

Supervision ‘

Research

Spin-off

] Consultancy

The lab is in Pisa, Italy! Feel free to visit and get in touch with us anytime! Official website: Pervasive Al Lab (unipi.it)



http://pai.di.unipi.it/

Do you have any questions?

vincenzo.lomonaco@unipi.it
vincenzolomonaco.com
University of Pisa ]

THANKS
w g

CREDITS: This presentation template was created by Slidesgo,
including icons by Flaticon, and infographics & images by Freepik



http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
https://www.vincenzolomonaco.com/

