DeepMind

Muesli: Combining Improvements in Policy Optimization

Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent Sifre, Theophane Weber, David Silver, Hado van Hasselt

Benefits

Make policy gradients robust to off-policy data and reward scales.

Obtain MuZero's state-of-the-art score on Atari, even without MCTS.

Outline

- 1. Making policy gradients robust
- 2. The combined agent: "Muesli"
- 3. Results on Atari and 9x9 Go

Policy Gradients

With a function approximation,

the following properties are important:

- Able to learn a stochastic policy.
- Able to learn from an n-step return.
- Directly optimizing the acting. (Not depending on accurate models.)

The objective

Maximize the value from a start state.

The sum of discounted rewards when following the policy π

Policy Gradient Theorem

Distribution of states Action-value
$$\frac{\partial v_\pi(s_0)}{\partial \theta} = \sum_s d_\pi(s) \sum_a \frac{\partial \pi(a|s)}{\partial \theta} q_\pi(s,a)$$

Policy parameters.

Policy Gradient Theorem

Is it a problem?

The problem from policy mismatch

- The possible degradation of the policy value is related to a distance between $\,\pi\,$ and $\,\pi_{
m old}\,$.

Policy loss

Clipped advantages are robust

With unclipped MPO advantages

With clipped MPO advantages

Related work

- <u>A natural policy gradient</u> ... clipped advantages = clipped update to policy logits.
- Conservative policy iteration
- <u>Trust Region Policy Optimization</u> (TRPO)
- Monte-Carlo Tree Search as regularized policy optimization
- <u>Mirror Descent Policy Optimization</u>
- Leverage the Average: an Analysis of KL Regularization in Reinforcement Learning

Muesli - the combined agent

Ingredients:

- Regularized policy optimization with Clipped MPO (CMPO).
- Retrace.
- MuZero model training as an auxiliary loss.

Acting: Directly with the policy network. No MCTS.

Atari state-of-the-art results

9x9 Go self-play results

Summary

- The value of a policy can degrade, if you compute the gradient on old data.
- The Muesli policy loss works on new environments without tuning.

