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Benefits

CHOPPERCOMMAND™

=  Make policy gradients robust to
off-policy data and reward scales.
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- Obtain MuZero's state-of-the-art score
on Atari, even without MCTS.
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Outline

1. Making policy gradients robust
2. The combined agent: "Muesli”
3. Results on Atari and 9x9 Go
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Policy Gradients

With a function approximation,
the following properties are important:

- Able to learn a stochastic policy.
- Able to learn from an n-step return.

- Directly optimizing the acting. (Not depending on accurate models.)
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The objective

Maximize the value from a start state.
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The sum of discounted rewards when following the policy T
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Policy Gradient Theorem

Distribution of states Action-value
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Policy parameters.

[Sutton et al. 2000] @



https://papers.nips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf

Policy Gradient Theorem
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Violated by
starting the episode with 7T 5]d

Is it a problem?
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The problem from policy mismatch

- The possible degradation of the policy value
is related to a distance between 71 and 7T01d
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Policy loss

A regularizer.

/
L(SﬂT) — LP(;(S,W) —+ KL(WCMPQ,W)

An improved policy, not too far from 7T o1d .
The improved policy is constructed by
MPO with clipped advantages.

Usual policy gradients.
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Mean return

Clipped advantages are robust

With unclipped MPO advantages With clipped MPO advantages
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Related work

- A natural policy gradient ... clipped advantages = clipped update to policy logits.

- Conservative policy iteration

- Trust Region Policy Optimization (TRPO)

- Monte-Carlo Tree Search as regularized policy optimization

- Mirror Descent Policy Optimization

- Leverage the Average: an Analysis of KL Regularization in Reinforcement Learning
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https://homes.cs.washington.edu/~sham/papers/rl/natural.pdf
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/KakadeLangford-icml2002.pdf
https://arxiv.org/abs/1502.05477
http://proceedings.mlr.press/v119/grill20a.html
https://arxiv.org/abs/2005.09814
https://neurips.cc/virtual/2020/public/poster_8e2c381d4dd04f1c55093f22c59c3a08.html

Muesli - the combined agent

Ingredients:
- Regularized policy optimization with Clipped MPO (CMPO).
- Retrace.

- MuZero model training as an auxiliary loss.

Acting: Directly with the policy network. No MCTS.




Atari state-of-the-art results
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9x9 Go self-play results

Win probability
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Summary

- The value of a policy can degrade, if you compute the gradient on old data.

- The Muesli policy loss works on new environments without tuning.
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