Improving Gradient Regularization using Complex-Valued Neural Networks

Eric Yeats, Yiran Chen, Hai Li

Computational Evolutionary Intelligence Lab ECE Department, Duke University

Adversarial Examples

Goodfellow et al "Explaining and Harnessing Adversarial Examples", ICLR 2015

Gradient Regularization

Training with Gradient Regularization (Real)

Gradient Regularization Term

$$\mathcal{R}(f,\underline{x},\underline{y}) = \beta \left\| \frac{\partial L(f,\underline{x},\underline{y})}{\partial \underline{x}} \right\|_{p}^{2}$$

$$\nabla_{W_i} \left[\mathcal{L}(f, \underline{x}, \underline{y}) + \beta \mathcal{R}(f, \underline{x}, \underline{y}) \right]$$

$$= \underline{e}_{i\mathcal{L}} \underline{1}^{T} \cdot \frac{\partial (W_{i}\underline{x}_{i})}{\partial W_{i}} + \beta \underline{e}_{i\mathcal{L}} \underline{e}_{i\mathcal{R}}^{T} \cdot \frac{\partial \frac{\partial (W_{i}\underline{x}_{i})}{\partial \underline{x}_{i}}}{\partial W_{i}}$$

Std. Loss Gradient
$$= \underline{e}_{i\mathcal{L}} (\underline{x}_{i} + \beta \underline{e}_{i\mathcal{R}})^{T}$$

Input to layer *i* G.R. Loss Gradient

Training with Gradient Regularization (Complex)

Derivative Constraint

$$\left(\frac{\partial g_i(\underline{x}_i)}{\partial W_{iR}}\right)^2 + \left(\frac{\partial g_i(\underline{x}_i)}{\partial W_{iI}}\right)^2 = 1$$

Training with Gradient Regularization

 $\zeta = \frac{\nabla_f \mathcal{L}(f, \underline{x}, \underline{y}) \nabla_f \left[\mathcal{L}(f, \underline{x}, \underline{y}) + \beta \mathcal{R}(f, \underline{x}, \underline{y}) \right]^T}{\left\| \nabla_f \mathcal{L}(f, \underline{x}, y) \right\|_2 \left\| \nabla_f \left[\mathcal{L}(f, \underline{x}, y) + \beta \mathcal{R}(f, \underline{x}, y) \right] \right\|_2}$

Attacks on MNIST and FashionMNIST

MNIST

Duke

FashionMNIST

Attacks on SVHN and CIFAR-10

Resistance to Black-Box Transfer Attacks

TRANSFER	MNIST	SVHN	FMNIST		
ТО	$\epsilon = 0.16$	$\epsilon = 0.10$	$\epsilon = 0.16$		
NETWORK:	$\beta = 0/64$	$\beta = 0/32$	$\beta = 0/64$		
FGSM FROM REAL-VALUED NETWORK (STD./G.R.)					
Self	22.5 / 86.6	4.1/32.5	2.2 / 53.1		
\mathbb{R} (Std.)	36.2/74.0	10.3 / 32.0	3.9 / 28.3		
$\mathbb{C}(STD.)$	93.7/93.1	22.8 / 40.5	12.6/33.7		
$\mathbb{R}(G.R.)$	93.0/91.5	52.9/34.9	63.9 / 53.8		
$\mathbb{C}(G.R.)$	95.3 / 95.8	55.7 / 41.9	68.5 / 60.4		
FGSM FROM COMPLEX-VALUED NETWORK (STD./G.R.)					
Self	58.4/93.9	10.4 / 36.7	1.7 / 53.4		
\mathbb{R} (Std.)	86.5 / 88.0	50.1/31.5	32.4 / 30.7		
$\mathbb{C}(STD.)$	93.1/95.7	35.5/36.3	15.9/31.2		
$\mathbb{R}(G.R.)$	97.1/95.8	63.0/37.8	70.2 / 57.6		
$\mathbb{C}(G.R.)$	97.3 / 96.4	65.4 / 41.5	74.7 / 58.4		

Resistance to Query-Based Attack

NES Attack on 1000 FashionMNIST Test Images 8-step PGD Attack ε = 0.16 4000 Queries/image

Net Type	No Defense	β=64 G.R.	ε=0.2 AdvTrain
Real-Valued	0%	62.3%	76.3%
Complex-Val.	0%	68.4%	

Ilyas et al. "Black-box Adversarial Attacks with Limited Queries and Information" ICML 2018

Improving Gradient Regularization using Complex-Valued Neural Networks

Eric Yeats, Yiran Chen, Hai Li

Code Available: https://github.com/ericyeats/cvnn-security

