
Matthias Fey Jan E. Lenssen Frank Weichert Jure Leskovec

GNNAutoScale: 
Scalable and Expressive Graph Neural  
Networks via Historical Embeddings

matthias.fey@udo.edu !/rusty1s/pyg_autoscale

Fey et al.: GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings (ICML 2021)

Scalable Graph Neural Networks

Applying Graph Neural Networks 

 
to large-scale graphs is challenging due to the  
"neighbor explosion" problem
‣ exponentially increasing dependency of nodes over layers

!2

f (3)
✓

f (2)
✓

f (1)
✓

v1 v2 v3 v4 v5 v6 v7 v8

v1 v2 v3 v4 v5 v6

v1 v2 v3 v4

v1

v1

v2

v3

v4v5

v6

v7
v8

Mini-batch B ✓ V

h(`+1)
v = f (`+1)

✓

⇣
h(`)
v ,

nn
h(`)
w : w 2 N (v)

oo⌘

<latexit sha1_base64="tYtj3jYwpnaXhwVgqS5BmnO7S6w=">AAACp3icbVFdixMxFM2MX2v92KqPvgSr0KKWGVnZVRCKvogPuuK2W2hqyaR3OmEzmSG506WE+Wv+CN/8N2baIu62F0IO59yTm3tvUippMYr+BOGNm7du3zm427p3/8HDw/ajxyNbVEbAUBSqMOOEW1BSwxAlKhiXBnieKDhPLj41+vkSjJWFPsNVCdOcL7RMpeDoqVn7F8s5Zknqsvqn6zJQir6kca+eLekHml6lHMMMkNeUKUixS3esje0VZR/lgjnKMltyAe712xLrf+QeyyV9Ty8pk3qjCq7c17q77G089b6H/GXkIsPerN2J+tE66C6It6BDtnE6a/9m80JUOWgUils7iaMSp44blEJB3WKVBV/tgi9g4qHmOdipW8+5pi88M6dpYfzRSNfs/w7Hc2tXeeIzm07sda0h92mTCtOTqZO6rBC02BRKK0WxoM3S6FwaEKhWHnBhpP8rFRk3XKBfbcsPIb7e8i4YvenHR/133486g8F2HAfkKXlGuiQmx2RAPpNTMiQieB58CX4EZ2Ev/BaOwvEmNQy2nifkSoT8L3sHzjE=</latexit>

Fey et al.: GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings (ICML 2021)

Scalable Graph Neural Networks

!3

The most common approaches for scaling up GNNs  
work by sampling edges  
Hamilton et al., 2017; Chen et al., 2018; Zou et al., 2019; Huang et al., 2018; Chiang et al., 2019; Zeng et al. 2019;...

However, just by the act of sampling edges, a GNN fails 
to learn anything about structural graph properties
‣ this leads to reduced model expressivity!

How can we learn structural graph properties
while still being scalable? 🤔

Fey et al.: GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings (ICML 2021)

Historical Embeddings

!4

⇡ f (`+1)

✓

✓
h(`)
v ,

nn
h(`)
w : w 2 N (v) \ B

oo
[
nn
h̄(`)
w : w 2 N (v) \ B

oo

| {z }
Historical Embeddings

◆

<latexit sha1_base64="UrNVLP8dcWSUcJOVFOgExVm6jC8=">AAADWHicjVJda9swFFXidm2zr7R73ItYGCRsC/boWLun0DHo0+hgaQtRZmT52hGVZSPJaYPwnxzsYfsre5mceF9tHnJB6HLOvdLR0Y0KwbXx/e+ttre1fW9nd69z/8HDR4+7+wfnOi8VgzHLRa4uI6pBcAljw42Ay0IBzSIBF9HV+5q/mIPSPJefzaKAaUZTyRPOqHFQuN+ShBaFym9wElpiZmBo9cX2CQiBX+BgUGES8TTtY5JRM4sSO/tND6pw/hKTE54Si8lMF5SBffWmMNUfcE3LNX6HrzHhcsUyKuzHqj8fYMJo8Rc7aQ6p1p3sNla64lLGoCJVs5vIIBFVTstGYjSYjMtSb6qoqs2DG6Mye+o+LVfOYIE/ZBHEMZeprhofB2G35w/9ZeC7SdAkPdTEWdj9SuKclRlIwwTVehL4hZlaqgxnAqoOKTU4OVc0hYlLJc1AT+1yMCr83CExTnLlljR4if7bYWmm9SKLXGX9Tn2bq8F13KQ0ydHUclmUBiRbXZSUApsc11OGY66AGbFwCWWKO62Yzaj7KuNmseNMCG4/+W5y/noYHA6PPx32RqPGjl30FD1DfRSgt2iETtEZGiPW+tb62d5qb7d/eMjb8fZWpe1W0/ME/RfewS9sOxFG</latexit>

= f (`+1)
✓

✓
h(`)
v ,

nn
h(`)
w : w 2 N (v) \ B

oo
[
nn
h(`)
w : w 2 N (v) \ B

oo◆

<latexit sha1_base64="akS1ZADDwB+9qDRl1wAOWokY2X4=">AAADHnicrVLLjtMwFHXCayiP6cCSjUWF1AqoElTEDBJSNWxYoUGiMyPVJXJcJ7HGcSL7pqPKypew4VfYsAAhJFbwNzhteM10wYIrWT465z58r29cSmEgCL57/oWLly5f2brauXb9xs3t7s6tQ1NUmvEJK2Shj2NquBSKT0CA5Mel5jSPJT+KT543+tGCayMK9RqWJZ/lNFUiEYyCo6Idb/QMJ5ElkHGg9RvbJ1xKfB+HgxqTWKRpH5OcQhYnNvspD+po8QCTfZESi0lmSsq4ffi4hPoXuSHkFD/Fp5gItVYZlfZl3V8MMGG0/M3tt0nqTZndxaryP5Y2HHKhKvPv9ZuZDKJuLxgGK8PnQdiCHmrtIOp+JfOCVTlXwCQ1ZhoGJcws1SCY5HWHVIa7Yic05VMHFc25mdnV99b4nmPmOCm0Owrwiv0zwtLcmGUeO8+mC3NWa8hN2rSCZHdmhSor4IqtCyWVxFDgZlfwXGjOQC4doEwL91bMMqopA7dRHTeE8GzL58Hho2E4Gu69GvXG43YcW+gOuov6KERP0Bi9QAdogpj31nvvffQ++e/8D/5n/8va1ffamNvoL/O//QDw1PzJ</latexit>

h(`+1)
v = f (`+1)

✓

✓
h(`)
v ,

nn
h(`)
w : w 2 N (v)

oo◆

<latexit sha1_base64="BoEGMSVAdV4XIDDh/Bfebt9AcbE=">AAACpnicbVFba9swGJW9W5tdmq2PfflYGDhsC/bo2AUKYXvZXkp3SVOIMk9WZFtUlo0kpwThn7Y/sbf9m8mJGWuTDwSHc76j75ZUgmsThn88/9btO3fv7e337j94+Oig//jJuS5rRdmElqJUFwnRTHDJJoYbwS4qxUiRCDZNLj+2+nTJlOal/G5WFZsXJJM85ZQYR8X9X7ggJk9Smzc/bICZEPAcomETL+EE0thikzNDrmuAE55lAWxZW9sLwB94hi3gXFeEMvvydWWaf+QOyxW8hyvAXG5USoQ9bYLlcONpdn3UtTCM+4NwFK4DtkHUgQHq4izu/8aLktYFk4YKovUsCiszt0QZTgVrerjWzBW7JBmbOShJwfTcrtfcwDPHLCAtlXvSwJr932FJofWqSFxmO4i+qbXkLm1Wm/Tt3HJZ1YZJuimU1gJMCe3NYMEVo0asHCBUcdcr0JwoQo27bM8tIbo58jY4fzWKjkfvvhwPxuNuHXvoCD1FAYrQGzRGn9AZmiDqDbzP3lfvmx/4p/7En25Sfa/zHKJr4f/8CzGezZA=</latexit>

We can utilize historical embeddings to approximate the  
missing out-of-mini-batch information for each layer

A generalization of the work of Chen et al., 2018

Historical embeddings represent node embeddings
acquired in previous training iterations

Fey et al.: GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings (ICML 2021)

Historical Embeddings

!5

v1

v2v3

v4v5

v6

v7
v8

Mini-batch B
1-hop neighborhood

S
v2B

N (v) \ B

G

H̄
(1)

H̄
(2)

GPU

CPU

f
(3)
✓

f
(2)
✓

f
(1)
✓

v1 v2 v3 v4

v1 v2 v3 v4

v1 v2 v3 v4

v1 v2

We can utilize historical embeddings to approximate the  
missing out-of-mini-batch information for each layer

‣ We pull the most recent histories from  
out-of-mini-batch nodes
‣ We push newly estimated embeddings to histories

Fey et al.: GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings (ICML 2021)

A historical-based GNN makes use of all available
neighborhood information:

Theoretical Analysis

!6

‣ Its approximation error is solely bounded by ...
1. the staleness of histories
2. the Lipschitz continuity of the GNN's message functions
3. the number of layers

‣ It can provably be as expressive as the WL-test in
distinguishing non-isomorphic subgraphs 🤗

Fey et al.: GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings (ICML 2021)

Tightening Error Bounds

!7

Accuracy 300 600 900

0.8

0.9

Epochs
Accuracy 50 100 150

0.5

0.6

Epochs

(a) 64-layer GCNII (b) 4-layer GIN

Full-batch Historical-based Baseline GAS

Fey et al.: GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings (ICML 2021)

Accuracy 300 600 900

0.8

0.9

Epochs
Accuracy 50 100 150

0.5

0.6

Epochs

Full-batch Historical-based Baseline GASFull-batch Historical-based Baseline GAS

Tightening Error Bounds

!8

In practice, we need to tighten the error bound for deep or
expressive GNN:

1. Reducing the amount of history accesses via clustering
2. Enforcing Lipschitz continuity via regularization

(a) 64-layer GCNII (b) 4-layer GIN

Accuracy 300 600 900

0.8

0.9

Epochs
Accuracy 50 100 150

0.5

0.6

Epochs

Full-batch Historical-based Baseline GAS

Fey et al.: GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings (ICML 2021)

Efficient History Accesses

‣ frequent data transfers to and from the GPU 
can cause major I/O bottlenecks 😭

!9

(a) Serial execution

Main

H2D Data H̄
(1)

H̄
(2)

Kernel f
(1)
✓ f

(2)
✓ f

(3)
✓

D2H H̄
(1)

H̄
(2)

Worker

H2D Data H̄
(1)

H̄
(2)

Kernel f
(1)
✓ f

(2)
✓ f

(3)
✓

D2H H̄
(1)

H̄
(2)

Pull
GNN
Push

(b) Concurrent execution

Main

H2D Data H̄
(1)

H̄
(2)

Kernel f
(1)
✓ f

(2)
✓ f

(3)
✓

D2H H̄
(1)

H̄
(2)

Worker

H2D Data H̄
(1)

H̄
(2)

Kernel f
(1)
✓ f

(2)
✓ f

(3)
✓

D2H H̄
(1)

H̄
(2)

Pull
GNN
Push

1. Immediately start transferring history chunks
asynchronously at the start of forward execution

2. Synchronize individual CUDA stream before GPU access

‣ We use non-blocking device transfers to counteract 🤗

Fey et al.: GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings (ICML 2021)

Our GAS framework is ...

Experimental Evaluation

!10

‣ fast and memory efficient

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

Table 4. Efficiency of GCN with GTTF and GAS.

Dataset
Runtime (s) Memory (MB)

GTTF GAS GTTF GAS

CORA 0.077 0.006 18.01 2.13

PUBMED 0.071 0.006 28.79 2.19

PPI 0.976 0.007 134.86 12.37

FLICKR 1.178 0.007 325.97 16.32

which utilizes a fast neighbor sampling strategy based on
tensor functionals. For this, we make use of a 4-layered
GCN model with equal mini-batch and receptive field sizes.
As shown in Table 4, GAS is both faster and consumes
less memory than GTTF. Although GTTF makes use of a
fast vectorized sampling procedure, its underlying recursive
neighborhood construction still scales exponentially with
GNN depth, which explains the observable differences in
runtime and memory consumption.

6.3. GAS scales to large graphs

In order to demonstrate the scalability and generality of our
approach, we scale various GNN operators to common large-
scale graph benchmark datasets. Here, we focus our analysis
on GNNs that are notorious hard to scale-up but have the
potential to leverage the increased amount of available data
to make more accurate predictions. In particular, we bench-
mark deep GNNs, i.e. GCNII (Chen et al., 2020b), and ex-
pressive GNNs, i.e. PNA (Corso et al., 2020). Note that it is
not possible to run those models in full-batch mode on most
of these datasets as they will run out of memory on com-
mon GPUs. We compare with 10 scalable GNN baselines:
GRAPHSAGE (Hamilton et al., 2017), FASTGCN (Chen
et al., 2018a), LADIES (Zou et al., 2019), VR-GCN (Chen
et al., 2018b), MVS-GNN (Cong et al., 2020), CLUSTER-
GCN (Chiang et al., 2019), GRAPHSAINT (Zeng et al.,
2020b), SGC (Wu et al., 2019), SIGN (Frasca et al., 2020)
and GBP (Chen et al., 2020a). Since results are hard to com-
pare across different approaches due to differences in frame-
works, model implementations, weight initializations and
optimizers, we additionally report a shallow GCN+GAS
baseline. GAS is able to train all models on all datasets on a
single GPU, while holding corresponding histories in CPU
memory. On the largest dataset, i.e. ogbn-products,
this will consume ⇡ L· 2GB of storage for L layers, which
easily fits in RAM on most modern workstations.

As can be seen in Table 5, the usage of deep and expressive
models within our framework advances the state-of-the-art
on REDDIT and FLICKR, while it performs equally well for
others, e.g., PPI. Notably, our approach outperforms the
two historical-based variants VR-GCN and MVS-GNN
by a wide margin. Interestingly, our deep and expressive
variants reach superior performance than our GCN baseline

Table 5. Performance on large graph datasets. GAS is both scal-
able and general while achieving state-of-the-art performance.
nodes 230K 57K 89K 717K 169K 2.4M
edges 11.6M 794K 450K 7.9M 1.2M 61.9M

Method REDDIT PPI FLICKR YELP
ogbn- ogbn-
arxiv products

GRAPHSAGE 95.40 61.20 50.10 63.40 71.49 78.70
FASTGCN 93.70 — 50.40 — — —
LADIES 92.80 — — — — —
VR-GCN 94.50 85.60 — 61.50 — —
MVS-GNN 94.90 89.20 — 62.00 — —
CLUSTER-GCN 96.60 99.36 48.10 60.90 — 78.97
GRAPHSAINT 97.00 99.50 51.10 65.30 — 79.08
SGC 96.40 96.30 48.20 64.00 — —
SIGN 96.80 97.00 51.40 63.10 — 77.60
GBP — 99.30 — 65.40 — —

Fu
ll-

ba
tc

h GCN 95.43 97.58 53.73 OOM 71.64 OOM
GCNII OOM OOM 55.28 OOM 72.83 OOM
PNA OOM OOM 56.23 OOM 72.17 OOM

G
A

S

GCN 95.45 98.92 54.00 62.94 71.68 76.66
GCNII 96.77 99.50 56.20 65.14 73.00 77.24
PNA 97.17 99.44 56.67 64.40 72.50 79.91

on all datasets, which highlights the benefits of evaluating
larger models on larger scale.

7. Conclusion and Future Work

We proposed a general framework for scaling arbitrary mes-
sage passing GNNs to large graphs without the necessity to
sub-sample edges. As we have shown, our approach is able
to train both deep and expressive GNNs in a scalable fashion.
Notably, our approach is orthogonal to many methodologi-
cal advancements, such as unifying GNNs and label prop-
agation (Shi et al., 2020), graph diffusion (Klicpera et al.,
2019b), or random wiring (Valsesia et al., 2020), which we
like to investigate further in future works. While our exper-
iments focus on node-level tasks, our work is technically
able to scale the training of GNNs for edge-level and graph-
level tasks as well. However, this still needs to be verified
empirically. Another interesting future direction is the fu-
sion of GAS into a distributed training algorithm (Jia et al.,
2020; Ma et al., 2019; Zhu et al., 2016; Tripathy et al., 2020;
Wan et al., 2020; Angerd et al., 2020; Zheng et al., 2020),
and to extend our framework in accessing histories from
disk storage rather than CPU memory. Overall, we hope
that our findings lead to the development of sophisticated
and expressive GNNs evaluated on large-scale graphs.

Acknowledgements

This work has been supported by the German Research As-

sociation (DFG) within the Collaborative Research Center
SFB 876 Providing Information by Resource-Constrained

Analysis, projects A6 and B2.

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

Table 4. Efficiency of GCN with GTTF and GAS.

Dataset
Runtime (s) Memory (MB)

GTTF GAS GTTF GAS

CORA 0.077 0.006 18.01 2.13

PUBMED 0.071 0.006 28.79 2.19

PPI 0.976 0.007 134.86 12.37

FLICKR 1.178 0.007 325.97 16.32

which utilizes a fast neighbor sampling strategy based on
tensor functionals. For this, we make use of a 4-layered
GCN model with equal mini-batch and receptive field sizes.
As shown in Table 4, GAS is both faster and consumes
less memory than GTTF. Although GTTF makes use of a
fast vectorized sampling procedure, its underlying recursive
neighborhood construction still scales exponentially with
GNN depth, which explains the observable differences in
runtime and memory consumption.

6.3. GAS scales to large graphs

In order to demonstrate the scalability and generality of our
approach, we scale various GNN operators to common large-
scale graph benchmark datasets. Here, we focus our analysis
on GNNs that are notorious hard to scale-up but have the
potential to leverage the increased amount of available data
to make more accurate predictions. In particular, we bench-
mark deep GNNs, i.e. GCNII (Chen et al., 2020b), and ex-
pressive GNNs, i.e. PNA (Corso et al., 2020). Note that it is
not possible to run those models in full-batch mode on most
of these datasets as they will run out of memory on com-
mon GPUs. We compare with 10 scalable GNN baselines:
GRAPHSAGE (Hamilton et al., 2017), FASTGCN (Chen
et al., 2018a), LADIES (Zou et al., 2019), VR-GCN (Chen
et al., 2018b), MVS-GNN (Cong et al., 2020), CLUSTER-
GCN (Chiang et al., 2019), GRAPHSAINT (Zeng et al.,
2020b), SGC (Wu et al., 2019), SIGN (Frasca et al., 2020)
and GBP (Chen et al., 2020a). Since results are hard to com-
pare across different approaches due to differences in frame-
works, model implementations, weight initializations and
optimizers, we additionally report a shallow GCN+GAS
baseline. GAS is able to train all models on all datasets on a
single GPU, while holding corresponding histories in CPU
memory. On the largest dataset, i.e. ogbn-products,
this will consume ⇡ L· 2GB of storage for L layers, which
easily fits in RAM on most modern workstations.

As can be seen in Table 5, the usage of deep and expressive
models within our framework advances the state-of-the-art
on REDDIT and FLICKR, while it performs equally well for
others, e.g., PPI. Notably, our approach outperforms the
two historical-based variants VR-GCN and MVS-GNN
by a wide margin. Interestingly, our deep and expressive
variants reach superior performance than our GCN baseline

Table 5. Performance on large graph datasets. GAS is both scal-
able and general while achieving state-of-the-art performance.
nodes 230K 57K 89K 717K 169K 2.4M
edges 11.6M 794K 450K 7.9M 1.2M 61.9M

Method REDDIT PPI FLICKR YELP
ogbn- ogbn-
arxiv products

GRAPHSAGE 95.40 61.20 50.10 63.40 71.49 78.70
FASTGCN 93.70 — 50.40 — — —
LADIES 92.80 — — — — —
VR-GCN 94.50 85.60 — 61.50 — —
MVS-GNN 94.90 89.20 — 62.00 — —
CLUSTER-GCN 96.60 99.36 48.10 60.90 — 78.97
GRAPHSAINT 97.00 99.50 51.10 65.30 — 79.08
SGC 96.40 96.30 48.20 64.00 — —
SIGN 96.80 97.00 51.40 63.10 — 77.60
GBP — 99.30 — 65.40 — —

Fu
ll-

ba
tc

h GCN 95.43 97.58 53.73 OOM 71.64 OOM
GCNII OOM OOM 55.28 OOM 72.83 OOM
PNA OOM OOM 56.23 OOM 72.17 OOM

G
A

S

GCN 95.45 98.92 54.00 62.94 71.68 76.66
GCNII 96.77 99.50 56.20 65.14 73.00 77.24
PNA 97.17 99.44 56.67 64.40 72.50 79.91

on all datasets, which highlights the benefits of evaluating
larger models on larger scale.

7. Conclusion and Future Work

We proposed a general framework for scaling arbitrary mes-
sage passing GNNs to large graphs without the necessity to
sub-sample edges. As we have shown, our approach is able
to train both deep and expressive GNNs in a scalable fashion.
Notably, our approach is orthogonal to many methodologi-
cal advancements, such as unifying GNNs and label prop-
agation (Shi et al., 2020), graph diffusion (Klicpera et al.,
2019b), or random wiring (Valsesia et al., 2020), which we
like to investigate further in future works. While our exper-
iments focus on node-level tasks, our work is technically
able to scale the training of GNNs for edge-level and graph-
level tasks as well. However, this still needs to be verified
empirically. Another interesting future direction is the fu-
sion of GAS into a distributed training algorithm (Jia et al.,
2020; Ma et al., 2019; Zhu et al., 2016; Tripathy et al., 2020;
Wan et al., 2020; Angerd et al., 2020; Zheng et al., 2020),
and to extend our framework in accessing histories from
disk storage rather than CPU memory. Overall, we hope
that our findings lead to the development of sophisticated
and expressive GNNs evaluated on large-scale graphs.

Acknowledgements

This work has been supported by the German Research As-

sociation (DFG) within the Collaborative Research Center
SFB 876 Providing Information by Resource-Constrained

Analysis, projects A6 and B2.

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

Table 4. Efficiency of GCN with GTTF and GAS.

Dataset
Runtime (s) Memory (MB)

GTTF GAS GTTF GAS

CORA 0.077 0.006 18.01 2.13

PUBMED 0.071 0.006 28.79 2.19

PPI 0.976 0.007 134.86 12.37

FLICKR 1.178 0.007 325.97 16.32

which utilizes a fast neighbor sampling strategy based on
tensor functionals. For this, we make use of a 4-layered
GCN model with equal mini-batch and receptive field sizes.
As shown in Table 4, GAS is both faster and consumes
less memory than GTTF. Although GTTF makes use of a
fast vectorized sampling procedure, its underlying recursive
neighborhood construction still scales exponentially with
GNN depth, which explains the observable differences in
runtime and memory consumption.

6.3. GAS scales to large graphs

In order to demonstrate the scalability and generality of our
approach, we scale various GNN operators to common large-
scale graph benchmark datasets. Here, we focus our analysis
on GNNs that are notorious hard to scale-up but have the
potential to leverage the increased amount of available data
to make more accurate predictions. In particular, we bench-
mark deep GNNs, i.e. GCNII (Chen et al., 2020b), and ex-
pressive GNNs, i.e. PNA (Corso et al., 2020). Note that it is
not possible to run those models in full-batch mode on most
of these datasets as they will run out of memory on com-
mon GPUs. We compare with 10 scalable GNN baselines:
GRAPHSAGE (Hamilton et al., 2017), FASTGCN (Chen
et al., 2018a), LADIES (Zou et al., 2019), VR-GCN (Chen
et al., 2018b), MVS-GNN (Cong et al., 2020), CLUSTER-
GCN (Chiang et al., 2019), GRAPHSAINT (Zeng et al.,
2020b), SGC (Wu et al., 2019), SIGN (Frasca et al., 2020)
and GBP (Chen et al., 2020a). Since results are hard to com-
pare across different approaches due to differences in frame-
works, model implementations, weight initializations and
optimizers, we additionally report a shallow GCN+GAS
baseline. GAS is able to train all models on all datasets on a
single GPU, while holding corresponding histories in CPU
memory. On the largest dataset, i.e. ogbn-products,
this will consume ⇡ L· 2GB of storage for L layers, which
easily fits in RAM on most modern workstations.

As can be seen in Table 5, the usage of deep and expressive
models within our framework advances the state-of-the-art
on REDDIT and FLICKR, while it performs equally well for
others, e.g., PPI. Notably, our approach outperforms the
two historical-based variants VR-GCN and MVS-GNN
by a wide margin. Interestingly, our deep and expressive
variants reach superior performance than our GCN baseline

Table 5. Performance on large graph datasets. GAS is both scal-
able and general while achieving state-of-the-art performance.
nodes 230K 57K 89K 717K 169K 2.4M
edges 11.6M 794K 450K 7.9M 1.2M 61.9M

Method REDDIT PPI FLICKR YELP
ogbn- ogbn-
arxiv products

GRAPHSAGE 95.40 61.20 50.10 63.40 71.49 78.70
FASTGCN 93.70 — 50.40 — — —
LADIES 92.80 — — — — —
VR-GCN 94.50 85.60 — 61.50 — —
MVS-GNN 94.90 89.20 — 62.00 — —
CLUSTER-GCN 96.60 99.36 48.10 60.90 — 78.97
GRAPHSAINT 97.00 99.50 51.10 65.30 — 79.08
SGC 96.40 96.30 48.20 64.00 — —
SIGN 96.80 97.00 51.40 63.10 — 77.60
GBP — 99.30 — 65.40 — —

Fu
ll-

ba
tc

h GCN 95.43 97.58 53.73 OOM 71.64 OOM
GCNII OOM OOM 55.28 OOM 72.83 OOM
PNA OOM OOM 56.23 OOM 72.17 OOM

G
A

S

GCN 95.45 98.92 54.00 62.94 71.68 76.66
GCNII 96.77 99.50 56.20 65.14 73.00 77.24
PNA 97.17 99.44 56.67 64.40 72.50 79.91

on all datasets, which highlights the benefits of evaluating
larger models on larger scale.

7. Conclusion and Future Work

We proposed a general framework for scaling arbitrary mes-
sage passing GNNs to large graphs without the necessity to
sub-sample edges. As we have shown, our approach is able
to train both deep and expressive GNNs in a scalable fashion.
Notably, our approach is orthogonal to many methodologi-
cal advancements, such as unifying GNNs and label prop-
agation (Shi et al., 2020), graph diffusion (Klicpera et al.,
2019b), or random wiring (Valsesia et al., 2020), which we
like to investigate further in future works. While our exper-
iments focus on node-level tasks, our work is technically
able to scale the training of GNNs for edge-level and graph-
level tasks as well. However, this still needs to be verified
empirically. Another interesting future direction is the fu-
sion of GAS into a distributed training algorithm (Jia et al.,
2020; Ma et al., 2019; Zhu et al., 2016; Tripathy et al., 2020;
Wan et al., 2020; Angerd et al., 2020; Zheng et al., 2020),
and to extend our framework in accessing histories from
disk storage rather than CPU memory. Overall, we hope
that our findings lead to the development of sophisticated
and expressive GNNs evaluated on large-scale graphs.

Acknowledgements

This work has been supported by the German Research As-

sociation (DFG) within the Collaborative Research Center
SFB 876 Providing Information by Resource-Constrained

Analysis, projects A6 and B2.

‣ can be applied to  
large-scale graphs 
with any GNN backbone

‣ has no runtime  
overhead induced by 
history accesses

Serial Access Concurrent Access

Computational Overhead I/O Overhead

0 2 4 6

100

200

300

400

Inter-/Intra-connectivity Ratio

R
u
n
t
im

e
O
v
e
r
h
e
a
d
[%

]

Fey et al.: GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings (ICML 2021)

Conclusion

!11

✓ constant GPU memory consumption w.r.t. input node size
✓ able to reason about graph structures at scale
✓ (nearly) no runtime overhead induced by history accesses
✓ can be applied with any GNN backbone
✓ fully open-sourced at !/rusty1s/pyg_autoscale on top of PyG

~

~

~

+

class GNN(ScalableGNN):
 def __init__(self, ...):
 super().__init__(num_nodes, hidden_channels, num_layers)
 self.conv1 = GCNConv(...)
 self.conv2 = GCNConv(...)

 def forward(self, x, edge_index, *args):
 x = self.conv1(x, edge_index).relu()
 x = self.push_and_pull(self.histories[0], x, *args)
 x = self.conv2(x, edge_index)
 return x

