

GNNAutoScale:

Scalable and Expressive Graph Neural Networks via Historical Embeddings

Matthias Fey

Jan E. Lenssen Frank Weichert

Jure Leskovec

matthias.fey@udo.edu

n/rusty1s/pyg_autoscale

Scalable Graph Neural Networks

Applying Graph Neural Networks

$$\mathbf{h}_v^{(\ell+1)} = f_\theta^{(\ell+1)} \left(\mathbf{h}_v^{(\ell)}, \left\{ \left\{ \mathbf{h}_w^{(\ell)} : w \in \mathcal{N}(v) \right\} \right\} \right)$$

to large-scale graphs is challenging due to the "neighbor explosion" problem

exponentially increasing dependency of nodes over layers

Scalable Graph Neural Networks

The most common approaches for scaling up GNNs work by sampling edges

Hamilton et al., 2017; Chen et al., 2018; Zou et al., 2019; Huang et al., 2018; Chiang et al., 2019; Zeng et al. 2019;...

However, just by the act of sampling edges, a GNN fails to learn anything about structural graph properties

this leads to reduced model expressivity!

Historical Embeddings

We can utilize historical embeddings to approximate the missing out-of-mini-batch information for each layer

$$\begin{split} \mathbf{h}_{v}^{(\ell+1)} &= f_{\theta}^{(\ell+1)} \bigg(\mathbf{h}_{v}^{(\ell)}, \Big\{ \!\!\!\Big\{ \mathbf{h}_{w}^{(\ell)} : w \in \mathcal{N}(v) \Big\} \!\!\!\Big\} \bigg) \\ &= f_{\theta}^{(\ell+1)} \bigg(\mathbf{h}_{v}^{(\ell)}, \Big\{ \!\!\!\Big\{ \mathbf{h}_{w}^{(\ell)} : w \in \mathcal{N}(v) \cap \mathcal{B} \Big\} \!\!\!\Big\} \cup \Big\{ \!\!\!\!\Big\{ \mathbf{h}_{w}^{(\ell)} : w \in \mathcal{N}(v) \setminus \mathcal{B} \Big\} \!\!\!\!\Big\} \bigg) \\ &\approx f_{\theta}^{(\ell+1)} \bigg(\mathbf{h}_{v}^{(\ell)}, \Big\{ \!\!\!\Big\{ \mathbf{h}_{w}^{(\ell)} : w \in \mathcal{N}(v) \cap \mathcal{B} \Big\} \!\!\!\!\Big\} \cup \underbrace{\Big\{ \!\!\!\!\Big\{ \mathbf{\bar{h}}_{w}^{(\ell)} : w \in \mathcal{N}(v) \setminus \mathcal{B} \Big\} \!\!\!\!\Big\} }_{\text{Historical Embeddings}} \bigg) \end{split}$$

Historical embeddings represent node embeddings acquired in previous training iterations

A generalization of the work of Chen et al., 2018

Historical Embeddings

We can utilize historical embeddings to approximate the missing out-of-mini-batch information for each layer

- We pull the most recent histories from out-of-mini-batch nodes
- We push newly estimated embeddings to histories

Theoretical Analysis

A historical-based GNN makes use of all available neighborhood information:

- Its approximation error is solely bounded by ...
 - 1. the staleness of histories
 - 2. the Lipschitz continuity of the GNN's message functions
 - 3. the number of layers

Tightening Error Bounds

Tightening Error Bounds

In practice, we need to tighten the error bound for deep or expressive GNN:

- Reducing the amount of history accesses via clustering
- 2. Enforcing Lipschitz continuity via regularization

Efficient History Accesses

- frequent data transfers to and from the GPU can cause major I/O bottlenecks @
- We use non-blocking device transfers to counteract <a>श
- Immediately start transferring history chunks asynchronously at the start of forward execution
- 2. Synchronize individual CUDA stream before GPU access

(a) Serial execution

(b) Concurrent execution

Experimental Evaluation

Our GAS framework is ...

fast and memory efficient

has no runtime overhead induced by history accesses

can be applied to large-scale graphs with any GNN backbone

Dataset	Runtime (s)		Memory (MB)		
Dataset	GTTF	GTTF GAS		GAS	
CORA	0.077	0.006	18.01	2.13	
PUBMED	0.071	0.006	28.79	2.19	
PPI	0.976	0.007	134.86	12.37	
FLICKR	1.178	0.007	325.97	16.32	

	odes dges	230K 11.6M	57K 794K	89K 450K	717K 7.9M	169K 1.2M	2.4M 61.9M
Me	ethod	REDDIT	PPI	FLICKR	YELP	ogbn- arxiv	ogbn- products
GAS	GCN GCNII PNA	95.45 96.77 97.17	99.50	54.00 56.20 56.67	65.14	73.00	76.66 77.24 79.91

Conclusion

- constant GPU memory consumption w.r.t. input node size
- able to reason about graph structures at scale
- (nearly) no runtime overhead induced by history accesses
- can be applied with any GNN backbone
- ✓ fully open-sourced at ♠/rusty1s/pyg_autoscale on top of PyG

```
class GNN(ScalableGNN):
    def __init__(self, ...):
    super().__init__(num_nodes, hidden_channels, num_layers)
    self.conv1 = GCNConv(...)
    self.conv2 = GCNConv(...)

def forward(self, x, edge_index, *args):
    x = self.conv1(x, edge_index).relu()

+    x = self.push_and_pull(self.histories[0], x, *args)
    x = self.conv2(x, edge_index)
    return x
```