d ortmun d (%‘j StanfOl'd SFB 876 Providing Information

univers |ty @] University by Resource-Constrained Data Analysis
GNNAutoScale:

Scalable and Expressive Graph Neural
Networks via Historical Embeddings

matthias.feyQudo.edu O)/rustyls/pyg_autoscale



Applying Graph Neural Networks
h{l) — f9(£+1) (hq(f), {{hg) W € N(v)}})

to large-scale graphs is challenging due to the
"neighbor explosion" problem

exponentially increasing dependency of nodes over layers

Mini-batch B C V




The most common approaches for scaling up GNNs
work by sampling edges

However, just by the act of sampling edges, a GNN fails
to learn anything about structural graph properties

this leads to reduced model expressivity!

How can we learn structural graph properties
while still being scalable? &



We can utilize historical embeddings to approximate the
missing out-of-mini-batch information for each layer

SR C G NW}})
(£+1 <h 6)7{{}1(6) ng\/ }}U{{hg) :wEN(U>\B}})
(K_H)(he),{{ L . cw e N (v }}U{Eg):wEN(U)\B}}>

\ >4

Historical Embeddings

Historical embeddings represent node embeddings
acquired in previous training iterations



We can utilize historical embeddings to approximate the
missing out-of-mini-batch information for each layer

We the most recent histories from
out-of-mini-batch nodes

We newly estimated embeddings to histories

Mini-batch B (3)
1-hop neighborhood | J N (v) \ B 0 e
ONOREAD H®

(2) \\ —

7]
ONORORD J2(0

(1) \\ ——
o CPU
) () @ @

GPU




A historical-based GNN makes use of all available
neighborhood information:

Its approximation error is solely bounded by ...
the staleness of histories
the Lipschitz continuity of the GNN's message functions
the number of layers

[t can provably be as expressive as the WL-test in
distinguishing non-isomorphic subgraphs &



. Tightening Error Bounds

= » » Full-batch ==== Historical-based Baseline
0.9 0.6

0.5

Accuracy 300 600 900 Accuracy 50 100 150
Epochs Epochs
(a) 64-layer GCNII (b) 4-layer GIN

Fey et al.. GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings (ICML 2021) /



Full-batch  ==== Historical-based Baseline === GAS

0.9 0.6
P e
0.5 FA
Accuracy 300 600 900 Accuracy 50 100 150
Epochs Epochs
(a) 64-layer GCNII (b) 4-layer GIN

In practice, we need to tighten the error bound for deep or
expressive GNN:

Reducing the amount of history accesses via clustering
Enforcing Lipschitz continuity via regularization



frequent data transfers to and from the GPU
can cause major |I/O bottlenecks @

We use non-blocking device transfers to counteract &

Immediately start transferring history chunks
asynchronously at the start of forward execution

Synchronize individual CUDA stream before GPU access

T
//////////

lllll

77 e — (5 7 07 ey 5
N

THD H® D H(2)

Pull | Data TH) Z u ata | HY | H
////////////////////
////////////////////

s S %
B 7/ N
[ 777 612//, (2) ey 619//4 (2) [ 77
Gy o Bie
N N
7 /ﬂ////; 9 R / /9////4 J 0 7
IIIIIIIIIIIIIIIIIIIIII vl
AR50, R N O | ;
b by /77 7/ irge’
Push 5%%5‘ H®) PUSh ’ﬁ@?ﬂ H®)
Y z D7
77727 7777] 2 7707077227
///////////////////// 77 :

(a) Serial execution (b) Concurrent execution



Our GAS framework is ...

fast and memory efficient

has no runtime
overhead induced by
history accesses

can be applied to
large-scale graphs
with any GNN backbone

Runtime (s) Memory (MB)
LB GITE GAS GTTF  GAS
CORA 0.077 0.006 18.01 2.13
PUBMED 0.071 0.006 28.79 2.19
PPI 0.976 0.007 134.86 12.37
FLICKR 1.178 0.007 325.97 16.32

me=  Concurrent Access

I/O Overhead

mem  Serial Access
Computational Overhead

g 400
= 300
=
= 200
o
(oD}
£ 100
=
=)
=
0 2 4 6
Inter- /Intra-connectivity Ratio
#nodes 230K 57K 89K 717K 169K 2.4M
# edges 11.6M 794K 450K 79M 1.2M 61.9M
Method REDDIT PPI FLICKR YeLp 97~  ©9Pn-
arxiv products
«n GOCN 9545 9892 54.00 6294 71.68 76.66
é GCNII 96.77 99.50 56.20 65.14 73.00 77.24
PNA 97.17 9944 56.67 64.40 72.50 79.91




constant GPU memory consumption w.r.t. input node size

able to reason about graph structures at scale

(nearly) no runtime overhead induced by history accesses

can be applied with any GNN backbone

fully open-sourced at ()/rustyls/pyg_autoscale on top of PyG

class GNN(ScalableGNN):
def __init__(self, ...):
super(). 1nit_(num_nodes, hidden_channels, num_layers)
self.convl = GCNConv(...)
self.conv2 = GCNConv(...)

def forward(self, x, edge_index, *args):
X = self.convl(x, edge_index).relu()
X = self.push_and pull(self.histories[0], x, *args)
X = self.conv2(x, edge_index)
return X



