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Motivation

External memory (e.g. Transformer) allows access to past states
Selective reading via the attention mechanism
Important for NLP, Reinforcement Learning

Scaling problem: all memories stored in the same way
- irrelevant memories take up space and compute
- high computational cost when scaling

Can we learn to forget irrelevant memories?
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Related I: Memory Size Growth
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Related I: Memory Size Growth
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Related Il: Two (orthogonal) Approaches

, des o
1. Faster search: given a query, o W&M,\ev@" T
efficiently attend over memories \;%%%w ) = quevy
Ex) Routing (Roy et al.),
Linear Trans. (Katharaopoulos et al.), J 'T N

Performer (Choromanski et al.),

Reformer (Kitaev et al.) all in 2020. u L l s
wemovies

2. Small memory: keep the
number of memories small
Transformer-XL (Dai et al., 2019)
Adaptive-span (Sukhbaatar et al., 2019) 0D
Compressive (Rae et al., 2020)
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Related: Reducing Memory Size

Method How memory is handled Complexity 7' tokens
Transformer Never forgets O(TQ)
ixed- O(TL
Fixed-span Memory is forgotten after L steps ( )
(e.g. Transformer-XL) L<T
/
. Learn [, from data per layer O(TL )
Adaptive-span /
- most layers have small L L/ < L
Compressive Trans. Merge C memories into a single vector O(TL/C)
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Related: Reducing Memory Size

Method How memory is handled Complexity 7' tokens
Transformer [ Never faraote \O(TQ)
Fixed-span : Q(TL>
(6.9, Transformer-3 All memories are treated o
equally regardless of their :
Adaptive-span impOrtance! '9,<TL )
<L

-

Compressive Trans. Merge C memories into a single vector O(TL/C)
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Method: Expire-Span

1
\ Learn to forget irrelevant memories
* Assign an expiration date to each

memory
* Depends on context

«  Memory isremoved after that date
- free space for important memories

* Memories are gradually decayed
- learning by backpropagation



Some equations

Compute Expire-spans from
the hidden state

e; = Lo(w'h; +b)

Soft masking function over
the remaining span

m(z) A
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Mask attention weights
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Auxiliary loss term for reducing
the memory size

Ltotal - Ltask + « Z Gz/T
)



Expire-Span example

hi ho hs hy hs|  hy time

Past memory Now
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Expire-Span example
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Expire-Span example
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Corridor Task

Memorize Color Walk through Correct Door
[ ] 1. At start, the agent sees a color
L.
= OO0 //D CIOIEE J 2. Crossalongcorridor
|

3. Openthe door of the same color
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Corridor Task
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Portal and Instruction Tasks

Receive Instruction
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Object Collision Task
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Language Modeling Task

- Character-level Enwik8
- SoTA performance
- Spans max=22k mean=1.2k

- Character-level PG19
- Comparable performance

- 3x smaller memory size than
adaptive-span
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Model efficiency

TASK MODEL PERFORMANCE GPU MEMORY (GB) TIME/BATCH (MS)

Enwik8 Compressive Transformer 1.05 bpb 21 838
Adaptive-Span 1.05 bpb 20 483
Expire-Span 1.03 bpb 15 408

Char-level Compressive Transformer 1.07 bpc 17 753

PG-19 Adaptive-Span 1.07 bpc 13 427
Expire-Span 1.07 bpc 15 388

Object Compressive Transformer 63.8% error 12 527

collision Adaptive-Span 59.8% error 17 365

Expire-Span 52.2% error 12 130



Expiration in Expire-Span
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Different Layers focus on different things

Layer 6 L

of Sub-Saharan Africa until 1500 A.D.==$===Medieval empires===$There were many great empi
Layer 9 I [

of Sub-Saharan Africa until 1500 A.D.==%$===Medieval empires===$There were many great empi
P i [l 0D

of Sub-Saharan Africa until 1500 A.D.==%$===Medieval empires===$There were many great empi

Expire-spans at different layers (enwik8):
Layer 6: space tokens have long spans - word-level
Layer 9: newlines, section titles > sentence, section level
Layer 10: named entities
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Conclusion

A new method for learning to forget at scale
What to forget is learnt from data itself
End-to-end training with backpropagation

Successful forgetting Reinforcement Learning tasks

In real-world Language Modeling tasks
Most memories can be forgotten
Improved efficiency and performance
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Thank You
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