Not All Memories are Created Equal: Learning to Forget by Expiring

Sainbayar Sukhbaatar, Da JU, Spencer Poff, Stephen Roller, Arthur Szlam, Jason Weston, Angela Fan ICML 2021

Motivation

- External memory (e.g. Transformer) allows access to past states
 - Selective reading via the attention mechanism
 - Important for NLP, Reinforcement Learning
- Scaling problem: all memories stored in the same way
 - → irrelevant memories take up space and compute
 - → high computational cost when scaling
- Can we learn to forget irrelevant memories?

Related I: Memory Size Growth

Related I: Memory Size Growth

Related II: Two (orthogonal) Approaches

- Faster search: given a query, efficiently attend over memories
 - Ex) Routing (Roy et al.),
 Linear Trans. (Katharaopoulos et al.),
 Performer (Choromanski et al.),
 Reformer (Kitaev et al.) all in 2020.
- 2. Small memory: keep the number of memories small
 - Transformer-XL (Dai et al., 2019)
 - Adaptive-span (Sukhbaatar et al., 2019)
 - Compressive (Rae et al., 2020)

Related: Reducing Memory Size

Method	How memory is handled	Complexity T tokens	
Transformer	Never forgets	$\mathcal{O}(T^2)$	
Fixed-span (e.g. Transformer-XL)	Memory is forgotten after L steps	$\mathcal{O}(TL)$ $L \ll T$	
Adaptive-span	Learn L from data per layer \rightarrow most layers have small L'	$\mathcal{O}(TL')$ $L' \ll L$	
Compressive Trans.	Merge ${\it C}$ memories into a single vector	$\mathcal{O}(TL/c)$	

Related: Reducing Memory Size

Method: Expire-Span

Learn to forget irrelevant memories

- Assign an expiration date to each memory
 - Depends on context
- Memory is removed after that date
 → free space for important memories
- Memories are gradually decayed
 → learning by backpropagation

Some equations

 Compute Expire-spans from the hidden state

$$e_i = L\sigma(\mathbf{w}^{\top}\mathbf{h}_i + b)$$

 Soft masking function over the remaining span

Mask attention weights

$$a'_{ti} = \frac{m_{ti}a_{ti}}{\sum_{j} m_{tj}a_{tj}}$$

 Auxiliary loss term for reducing the memory size

$$L_{\text{total}} = L_{\text{task}} + \alpha \sum_{i} e_i / T$$

Expire-Span example

Expire-Span example

Expire-Span example

Corridor Task

- 1. At start, the agent sees a color
- 2. Cross a long corridor
- 3. Open the door of the same color

Corridor Task

Portal and Instruction Tasks

Object Collision Task

Maximum memory size

Language Modeling Task

- Character-level Enwik8
 - SoTA performance
 - Spans max=22k mean=1.2k

- Character-level PG19
 - Comparable performance
 - 3x smaller memory size than adaptive-span

Model efficiency

TASK	MODEL	PERFORMANCE	GPU MEMORY (GB)	TIME/BATCH (MS)
Enwik8	Compressive Transformer	1.05 bpb	21	838
	Adaptive-Span	1.05 bpb	20	483
	Expire-Span	1.03 bpb	15	408
Char-level PG-19	Compressive Transformer	1.07 bpc	17	753
	Adaptive-Span	1.07 bpc	13	427
	Expire-Span	1.07 bpc	15	388
Object collision	Compressive Transformer	63.8% error	12	327
	Adaptive-Span	59.8% error	17	365
	Expire-Span	52.2% error	12	130

Expiration in Expire-Span

Different Layers focus on different things

Expire-spans at different layers (enwik8):

Layer 6: space tokens have long spans → word-level

Layer 9: newlines, section titles → sentence, section level

Layer 10: named entities

Conclusion

- A new method for learning to forget at scale
 - What to forget is learnt from data itself
 - End-to-end training with backpropagation
- Successful forgetting Reinforcement Learning tasks
- In real-world Language Modeling tasks
 - Most memories can be forgotten
 - Improved efficiency and performance

Thank You

23