

Towards Better Robust Generalization with Shift Consistency Regularization

Shufei Zhang^{*12} Zhuang Qian^{*12} Kaizhu Huang¹ Qiufeng Wang¹ Rui Zhang³ Xinping Yi²

^{*}Equal contribution ¹School of Advanced Technology, Xi'an Jiaotong-Liverpool University, China. ²School of Electrical Engineering, Electronics and Computer Science, University of Liverpool, UK. ³School of Science, Xi'an Jiaotong-Liverpool University, China. Correspondence to: Kaizhu Huang <kaizhu.huang@xjtlu.edu.cn;kaser.huang@gmail.com>.

Adversairal Training

- Adversarial data can easily fool the standard trained classifier.
- Adversarial training is one of the most effective methods to obtain the adversarial robustness for the trained classifier.

 $+.007 \times$

x "panda" 57.7% confidence

 $\begin{array}{c} \operatorname{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},\boldsymbol{y})) & \overset{\boldsymbol{x}}{\operatorname{\epsilonsign}}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},\boldsymbol{y})) \\ \operatorname{``nematode''} & \operatorname{``gibbon''} \\ 8.2\% \text{ confidence}://blog.c99.3:\% \text{ confidence} \end{array}$

Purporse: Maximize margin by training with worst perturbation so that the adversarial examples can not cross the decision boundary.

Conventional Adversarial Training

• Minimax formulation:

$$rgmin_{ heta}\mathbb{E}_{(x,y)\sim D}\left[\max_{\epsilon\in S}L(heta,x+\epsilon,y)
ight],$$

• Projected gradient descent (PGD) formulates the problem of finding the most adversarial data as a constrained optimization problem. Namely, given a starting point $x^0 \in S_x$ and step size α , PGD works as followed:

$$x^{t+1} = \Pi_{S_x}(x^t + \alpha \cdot \operatorname{sgn}(\nabla_x L(x^t, y; \theta))),$$

Feature Scattering based Adversarial Training (FS)

• Maxmize the wesserstein distance of outputs of clean and perturbed data (inter sample relationship is considerred).

$$\begin{split} \min_{\theta} \quad & \frac{1}{N} \sum_{i=1}^{N} L(x_i^{adv}, y_i; \theta) \\ \text{s.t.} \quad & \nu^* = \sum_{i=1}^{N} v_i \delta_{x_i^{adv}} = \arg \max_{\nu \in S_{\mu}} D_{ot}(\nu, \mu) \end{split}$$

where $\mu = \sum_{i=1}^{N} u_i \delta_{x_i}$ and $\nu = \sum_{i=1}^{N} v_i \delta_{x_i}^{adv}$ are two discrete distributions for natural examples $\{x_i\}_{i=0}^{N}$ and perturbed examples $\{x'_i\}_{i=0}^{N}$ respectively and $V = \{v_i\}_{i=1}^{N}$ and $U = \{u_i\}_{i=1}^{N}$ are corresponding weights. Here, $v_i = u_i = 1/N$. $S_{\mu} =$ $\{\sum_i v_i \delta_{z_i}, |z_i \in B(x_i, \epsilon) \cap [0, 255]^d\}$ denotes the feasible region. $D_{ot} = \min_{T \in \prod(U,V)} \sum_{i=1}^{N} \sum_{j=1}^{N} T_{ij}c(x_i, x'_j)$ is the optimal transport (OT) distance where $\prod(U,V) =$ $\{T \in \mathbb{R}^{N \times N}_{+} | T1_N = U, T^{\top} 1_N = V\}$ and 1_N denotes allone vector. Here, the cost function is defined as $c(x_i, x'_j) =$ $1 - \frac{f_{\theta}(x_i)^{\top} f_{\theta}(x'_j)}{\|f_{\theta}(x_i)\|_2 \|f_{\theta}(x'_j)\|_2}$ to measure the feature similarity.

Generalization Issue of Adversarial Training

- While previous methods achieve impressive robustness performance, there still exists a big robust generalization gap between training and test sets.
- The robust generalization gap (training accuracy test accuracy) of AT is around 40% and FS is around 20%.

Analysis for Generalization Issue

- Visualization for output feautures and effect of adversarial perturbations on feature shifts.
- Adversarial perturbations cause the different feature shifts for test and training data and lead to generalization issue.

(a) FS w/ clean data

(b) FS w/ adversarial data

(a) FS training shifts

(b) FS test shifts

Theoretical Analysis for Robust Generalization

• Relationship between robust generalization and standard generalization. (Difference is feature shift inconsistancy)

Incorem 6.1.1. Given the training set $S_d = \{x_i\}_{i=1}^n$ that consists of *n* i.i.d samples drawn from a distribution *S* with *K* classes, and the set of corresponding adversarial examples $S_d^{ade} = \{x_i^{ade}\}_{i=1}^n$ drawn from the underlying distribution S^{ade} , if the loss function $I(\cdot)$ of DNN f₀ is k-Lipschitz, then for any $\delta > 0$, with the probability at least $1 - \delta$, we have

$$\begin{split} \text{RGE} &\leq \text{GE} + \frac{k}{n} \sum_{i=1}^{N} \sum_{j \in N_{i}} \left\| d_{\theta}(x_{j}^{adv}) - \tilde{d}_{\theta}(z,C_{i}) \right\|_{2}^{2} \end{split} \begin{array}{l} \text{feature shift} \quad (6.1) \\ \text{inconsistancy} \quad (4.1) \\ &+ M \sqrt{\frac{2K \ln 2 + 2\ln \frac{1}{N}}{N}} \\ d_{\theta}(x^{adv}) &= f_{\theta}(x^{adv}) - f_{\theta}(x) \\ \tilde{d}_{\theta}(z,C_{i}) &= \mathbb{E}[f_{\theta}(z^{adv}) - f_{\theta}(z) | z \in C_{i}] \end{split}$$

where

Theoretical Analysis for Robust Generalization

 Relationship between robust generalization and feature shift inconsistancy. (The changes of the shift inconsistency and gap difference RGE-GE are consistent.)

Adversarial Training with Shift Consistency Regularization

• Penalize the feature shift inconsistency.

$$\begin{split} \min_{\theta} & \Big\{ \sum_{i=1}^{n} \left[L(x_{i}^{adv}, y_{i}; \theta) \right] \\ & + \frac{\lambda}{n} \sum_{i=1}^{K} \sum_{j \in N_{i}} \widehat{SiC}(x_{j}^{adv}, x_{l}, N_{i}) \Big\}, \\ \text{s.t.} \quad x_{i}^{adv} &= \arg \max_{x_{i}' \in S_{x_{i}}} L(x_{i}', y_{i}; \theta). \\ \widehat{SiC}(x_{j}^{adv}, x_{l}, N_{i}) &\triangleq \| d_{\theta}(x_{j}^{adv}) - \bar{d}_{\theta}(x_{l}, N_{i}) \|_{2}^{2}, \\ \text{where} & d_{\theta}(x^{adv}) = f_{\theta}(x^{adv}) - f_{\theta}(x) \\ & \hat{d}_{\theta}(z, C_{i}) = \mathbb{E}[f_{\theta}(z^{adv}) - f_{\theta}(z) | z \in C_{i}] \end{split}$$

To consider different types of attacks, we penalize the upper bound of shift inconsistency:

$$\max_{x'_j \in S_{x_i}} \widehat{\operatorname{SiC}}(x'_j, x_l, N_i).$$

We approximate test feature shft with average feature shift over training data.

 $\widehat{\operatorname{SiC}}(x'_j, \mu_i) \triangleq \|d_{\theta}(x'_j) - \mu_i\|_2^2$

Some Results

Table 1. Accuracy under white-box attacks on CIFAR-10

MODELS	CLEAN	Accuracy under White-box Attack ($\epsilon = 8$)								
	CLLIN	FGSM	PGD20	PGD40	PGD100	CW20	CW40	CW100		
STANDARD	95.60	36.90	0.00	0.00	0.00	0.00	0.00	0.00		
AT	85.70	54.90	44.90	44.80	44.80	45.70	45.60	45.40		
TLA	86.21	58.88	51.59	-	-	-	-	-		
LAT	87.80	-	53.84	-	53.04	-	-	-		
BILATERAL	91.20	70.70	57.50	_	55.20	56.20	_	53.80		
FS	90.00	78.40	70.50	70.30	68.60	62.40	62.10	60.60		
RST-AWP	88.25	67.94	63.73	-	63.58	61.62	-	-		
$RLFAT_T$	82.72	-	58.75	-	-	51.94	-	-		
$RLFAT_P$	84.77	-	53.97	-	-	52.40	-	-		
FS-SCR	92.70	89.87	76.45	71.60	67.79	75.42	72.69	69.79		

Some Results

MODELS	$CIFAR-100(\epsilon = 8)$						$SVHN(\epsilon = 8)$					
	CLEAN	FGSM	PGD20	PGD100	CW20	CW100	CLEAN	FGSM	PGD20	PGD100	CW20	CW100
STANDARD	79.00	10.00	0.00	0.00	0.00	0.00	97.20	53.00	0.30	0.10	0.30	0.10
AT	59.90	28.50	22.60	22.30	23.20	23.00	93.90	68.40	47.90	46.00	48.70	47.30
LAT	60.94	-	27.03	26.41	-	-	60.94	-	60.23	59.97	-	-
BILATERAL	68.20	60.80	26.70	25.30	-	22.10	94.10	69.80	53.90	50.30	-	48.90
FS	73.90	61.00	47.20	46.20	34.60	30.60	96.20	83.50	62.90	52.00	61.30	50.80
AT-AWP	-	-	30.71	-	-	-	-	-	59.12	-	-	-
$RLFAT_T$	58.96	-	31.63	-	27.54	-	-	-	-	-	-	-
$RLFAT_P$	56.70	-	31.99	-	29.04	-	-	-	-	-	-	-
FS-SCR	74.20	72.19	48.87	47.34	38.90	33.60	96.60	92.52	70.24	60.72	64.62	54.90

Table 2. Accuracy under different white-box attack on CIFAR-100 and SVHN

Some Results

Thanks for your attention