Differentially Private Sliced Wasserstein Distance

Alain Rakotomamonjy & Liva Ralaivola Criteo Al Lab

Objective of the work

Privacy Preserving Learning

- Learn from data while guaranteeing privacy..
- ... in the context of domain adaptation and generative models
- we propose a

Differentially Private Distribution Distance

How?

Exploit the privacy property of

$$\mathcal{M}(\mathbf{X}) = \mathbf{X}\mathbf{U} + \mathbf{V},$$

- \blacktriangleright Make clear the ink between $\mathcal{M}(\mathbf{X})$ and Sliced Wasserstein Distance
- Introduce Differential Private SWD and its metric properties

Differential Privacy

Definition

[Dwork, 2008]

Let $\varepsilon, \delta > 0$. Let $\mathcal{A} : \mathcal{D} \to \operatorname{Im} \mathcal{A}$ be a *randomized* algorithm, where $\operatorname{Im} \mathcal{A}$ is the image of \mathcal{D} through \mathcal{A} . \mathcal{A} is (ε, δ) -differentially private, or (ε, δ) -DP, if for all neighboring datasets $D, D' \in \mathcal{D}$ and for all sets of outputs $\mathcal{O} \in \operatorname{Im} \mathcal{A}$, the following inequality holds :

$$\mathbb{P}[\mathcal{A}(D) \in \mathcal{O}] \le e^{\varepsilon} \mathbb{P}[\mathcal{A}(D') \in \mathcal{O}] + \delta$$

where the probability relates to the randomness of \mathcal{A} .

Renyi DP and Gaussian Mechanism

Renyi DP

[Mironov, 2017]

Let $\varepsilon > 0$ and $\alpha > 1$. A randomized algorithm \mathcal{A} is (α, ε) -Rényi differential private or (α, ε) -RDP, if for any neighboring datasets $D, D' \in \mathcal{D}$,

 $\mathbb{D}_{\alpha}\left(\mathcal{A}(D)\|\mathcal{A}(D')\right) \leq \varepsilon$

where $\mathbb{D}_{\alpha}(\cdot \| \cdot)$ is the Rényi α -divergence between two distributions.

How to easily make a function DP?

Given a function $f : \mathcal{X} \to \mathbb{R}^d$, the *Gaussian mechanism* \mathcal{M}_{σ} defined as follows :

 $\mathcal{M}_{\sigma}f(\cdot) = f(\cdot) + \mathbf{v}$

where $\mathbf{v} \sim \mathcal{N}(0, \sigma^2 I_d)$. If f has Δ_{2^-} (or ℓ_{2^-}) sensitivity $\Delta_2 f \doteq \max_{D,D' \text{neighbors}} \|f(D) - f(D')\|_2$,

then \mathcal{M}_{σ} is $\left(\alpha, \frac{\alpha \Delta_2^2 f}{2\sigma^2}\right)$ -RDP.

From Wasserstein Distance ...

Definition

- \blacktriangleright Given two probability distributions $\mu_s,\,\mu_t$ on space Ω with metric $c(\cdot,\cdot)$
- For empirical distributions, the *q*-Wasserstein distance is When $\mu_{s} = \sum_{i=1}^{n} a_{i} \delta_{\mathbf{x}_{i}^{s}} \text{ and } \mu_{t} = \sum_{i=1}^{n} b_{i} \delta_{\mathbf{x}_{i}^{t}}$ $W_{q}^{q} = \operatorname*{arg\,min}_{\mathbf{G} \in \mathbf{P}} \quad \left\{ \langle \mathbf{G}, \mathbf{C}_{q} \rangle_{F} = \sum_{i,j} \gamma_{i,j} c_{i,j}^{q} \right\}$

where C_q is a cost matrix with $c_{i,j} = c(\mathbf{x}_i^s, \mathbf{x}_j^t)^q$ and the marginals constraints are

$$\mathbf{P} = \left\{ \mathbf{G} \in (\mathbb{R}^+)^{n_s imes n_t} | \mathbf{G} \mathbf{1}_{n_t} = \mathbf{a}, \mathbf{G}^T \mathbf{1}_{n_s} = \mathbf{b}
ight\}$$

... through Sliced Wasserstein Distance ...

Statement

1D Wasserstein distance is cheap to compute

computing Sliced Wasserstein distance

- \blacktriangleright some sample random directions $\mathbf{u} \in \mathbb{S}^{d-1}$ uniformly
- project data on each random direction
- compute all 1d Wasserstein distance and average them

$$\mathsf{SWD}_q^q = \frac{1}{k} \sum_{j=1}^k W_q^q \left(\frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{x}_i^{s^{\top}} \mathbf{u}_j}, \frac{1}{m} \sum_{i=1}^m \delta_{\mathbf{x}_i^{t^{\top}} \mathbf{u}_j} \right)$$
(1)

Features

- Still a distance, efficient to compute
- \blacktriangleright Randomized algorithm through $\mathbf{x}^{\top}\mathbf{u}$ (and $\mathbf{XU})$

... to Differentially Private SWD

How to make SWD differentially private?

- $\blacktriangleright\,$ add Gaussian noise to the random projection ${\bf XU}$
- exploit post-processing DP property

Definition for empirical distributions

$$\mathsf{DP}\mathsf{-}\mathsf{SWD}_{q}^{q} = \frac{1}{k} \sum_{j=1}^{k} W_{q}^{q} \left(\frac{1}{n} \sum_{i=1}^{n} \delta_{\mathbf{x}_{i}^{\top} \mathbf{u}_{j} + \mathbf{v}_{j}}, \frac{1}{m} \sum_{i=1}^{m} \delta_{\mathbf{x}_{i}^{\prime \top} \mathbf{u}_{j} + \mathbf{v}_{j}^{\prime}} \right)$$
(2)

Questions

- ► What DP guarantee do we get?
- Do we preserve any metric structure?

$(\varepsilon,\delta)\text{-}\mathbf{DP}$ Property

Sensitivity of $\mathbf{X}\mathbf{U}$

Assume X, X' neighbouring datasets differing only at row *i*, $z = ||x_i - x'_i||_2 \le 1$

• with $\mathbf{u} \in \mathbb{S}^{d-1}$, $\mathbf{z}^{\top}\mathbf{u} \sim B(1/2), (d-1)/2)$

$$\|\mathbf{X}\mathbf{U}-\mathbf{X}'\mathbf{U}\|_{F}^{2} \leq w(k,\delta) \doteq \begin{cases} \frac{k}{d} + \frac{2}{3}\ln\frac{1}{\delta} + \frac{2}{d}\sqrt{k\frac{d-1}{d+2}\ln\frac{1}{\delta}} & \text{Bernstein} \\ \frac{k}{d} + \frac{z_{1-\delta}}{d}\sqrt{\frac{2k(d-1)}{d+2}} & \text{CLT} \end{cases}$$

(ε, δ) -DPness of $\mathbf{XU} + \mathbf{V}$

Assume V is a Gaussian matrix in $\mathbb{R}^{n \times k}$ with entries drawn from $\mathcal{N}(0, \sigma^2)$, for $\alpha > 1$, $\mathbf{XU} + \mathbf{V}$ is $(\frac{\alpha w(k, \delta/2)}{2\sigma^2} + \frac{\log(2/\delta)}{\alpha - 1}, \delta)$ -DP.

Analyses of $w(k, \delta)$

$$w(k,\delta) \doteq \begin{cases} \frac{k}{d} + \frac{2}{3}\ln\frac{1}{\delta} + \frac{2}{d}\sqrt{k\frac{d-1}{d+2}\ln\frac{1}{\delta}} & \text{Bernstein} \\ \frac{k}{d} + \frac{z_{1-\delta}}{d}\sqrt{\frac{2k(d-1)}{d+2}} & \text{CLT} \end{cases}$$

Looking at the equation

- from term $\frac{k}{d}$: the higher the dimension, the smaller the sensitivity
- ▶ the smaller the number of projection, the smaller the sensitivity
- there is an imcompressible term in $\frac{1}{\delta}$ for the Bernstein bound
- the CLT bound is tighter

Simulation

- \blacktriangleright $\|\mathbf{U}\mathbf{z}\|_2^2$ with fixed $\mathbf{z} \in \mathbb{S}^{d-1}$
- ▶ d = 784, k = 200, and 10000 draws of U
- $\blacktriangleright \ \delta = 10^{-5}$
- Bernstein bound > 1

• CLT bound
$$< \frac{k}{d} + 6c$$

9/16

Metric properties of DP-SWD

DP-SWD is a distance

Formalization

$$\mathsf{DP}_{\sigma}\mathsf{SWD}_{q}^{q}(\mu,\nu) \doteq \int_{\mathbb{S}^{d-1}} W_{q}^{q}(\mathcal{R}_{\mathbf{u}}\mu * \mathcal{N}_{\sigma}, \mathcal{R}_{\mathbf{u}}\nu * \mathcal{N}_{\sigma})u_{d}(\mathbf{u})d\mathbf{u}$$

projection $\mathcal{R}_{\mathbf{u}}$, adding Gaussian noise is convolution with Gaussian

- All properties of a distance are preserved
- Gaussian smoothed version of original projected distributions

Application of DP-SWD

Distribution matching in ML problems

Generative modelling

$$\min_f \mathcal{D}(\mathbf{X}_t, f(z))$$

▶ Unsupervised domain adaptation $\min_{g,h} L_c(h(g(\mathbf{X}_s)), \mathbf{y}_s) + \mathcal{D}(g(\mathbf{X}_s), g(\mathbf{X}_t))$

with $\mathbf{X}_s, \mathbf{y}_s$, public labeled data from source domain, \mathbf{X}_t unlabeled private data from target domain. $h(\cdot)$ the representation mapping, $g(\cdot)$ the classifier.

How-to make them privacy-preserving

- Clip the input space so that $\|\mathbf{x}_i \mathbf{x}'_i\|_2 \leq 1$
- ► In domain adaptation [Lee et al., 2019] or generative model [Deshpande et al., 2018], plug-in DP-SWD in place of SWD as distance D.

Experiments on domain adaptation

Settings

- ► Computer Vision dataset (MNIST → USPS, VisDA, Office)
- ▶ UDA : learning representation + classifier
- Baselines : DANN, DA, using SWD and DP-DANN (with gradient clipping)
- Outcome : small loss of accuracy wrt SWD, robustness of the model accross large range of ε-DP guarantee.

					0.9 -			-	-
Data	DANN	Met SWD	hods DP-DANN	DP-SWD	0.8 -				-
M-U U-M D - W D - A A - W A - D W - A W - D	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 95.5 \pm 1 \\ 84.8 \pm 2 \\ 53.8 \pm 1 \\ 90.7 \pm 1 \\ 59.4 \pm 1 \\ 74.5 \pm 1 \\ 78.5 \pm 1 \\ 59.1 \pm 0 \\ 95.7 \pm 1 \end{array}$	$\begin{array}{c} 87.1\pm2\\ 73.5\pm2\\ \textbf{49.0}\pm1\\ 88.0\pm1\\ \textbf{56.5}\pm1\\ 68.7\pm1\\ 73.7\pm1\\ 56.0\pm1\\ 63.4\pm3\\ \end{array}$	$\begin{array}{c} 94.0\pm \ 0\\ 83.4\pm \ 2\\ 47.0\pm \ 1\\ 90.9\pm \ 1\\ 55.2\pm \ 2\\ 72.6\pm \ 1\\ 79.8\pm \ 1\\ 59.0\pm \ 1\\ 92.6\pm \ 1\\ \end{array}$	- 0.0 accuracy			MNIST-US JSPS-MN VisDA W - D A - W	,PS IST
					-	2	4 6 ensilon	8	10

Experiments on generative modelling

Settings

- generate MNIST and FashionMNIST samples from private data
- Evaluate quality of the generated data on classification task
- same experimental setting as in DP-MERF [Harder et al., 2020].

	MNIST		FashionMNIST	
Method	MLP	LogReg	MLP	LogReg
SWD	87	82	77	76
GS-WGAN	79	79	65	68
DP-CGAN	60	60	50	51
DP-MERF	76	75	72	71
DP-SWD-c	77	78	67	66
DP-SWD-b	76	77	67	66

Experiments on generative modelling

Setting

- CelebA dataset. original input 64 × 64 × 3. first application of DP generative model on this dataset
- architecture and optimizer as in [Nguyen et al., 2020]. Latent space of distributions to be compared 8192.
- plugged-in DP-SWD instead of SWD.
- bound choice $w(k, \delta)$ strongly impacts visual quality

first row : SWD, second row DP-SWD with (left) CLT and (right) Berstein bound.

Conclusion

What we proposed

- a differentially private distance on distributions
- ▶ DP-SWD exploits random projection + Gaussian mechanism
- Seamless plug into learning models
- ▶ but ...
 - introduce smoothness

On-going extension

- theoretical analysis of the Gaussian smoothed SWD
- better post-processing for generative modelling

References I

Deshpande, I., Zhang, Z., and Schwing, A. G. (2018). Generative modeling using the sliced wasserstein distance. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3483-3491. Dwork, C. (2008). Differential privacy : A survey of results. In International conference on theory and applications of models of computation, pages 1-19. Springer. Harder, F., Adamczewski, K., and Park, M. (2020). Differentially private mean embeddings with random features (dp-merf) for simple & practical synthetic data generation. arXiv preprint arXiv :2002.11603. Lee, C.-Y., Batra, T., Baig, M. H., and Ulbricht, D. (2019). Sliced wasserstein discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10285–10295. Mironov, I. (2017). Rényi differential privacy. In 2017 IEEE 30th Computer Security Foundations Symposium (CSF), pages 263-275. Nguyen, K., Ho, N., Pham, T., and Bui, H. (2020). Distributional sliced-wasserstein and applications to generative modeling. arXiv preprint arXiv :2002.07367.