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Objective of the work

‘ Privacy Preserving Learning‘

» Learn from data while guaranteeing privacy..
» ... in the context of domain adaptation and generative models

» we propose a

Differentially Private Distribution Distance

Exploit the privacy property of
M(X)=XU+V,

» Make clear the ink between M(X) and Sliced Wasserstein Distance
Introduce Differential Private SWD and its metric properties

v
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Differential Privacy

Definition [Dwork, 2008]

Let £,6 > 0. Let A: D — Im A be a randomized algorithm, where Im A is the
image of D through A. A is (g, §)-differentially private, or (¢, §)-DP, if for all
neighboring datasets D, D’ € D and for all sets of outputs O € Im A, the
following inequality holds :

P[A(D) € O] < e’P[A(D") € O] + 6

where the probability relates to the randomness of A.

lllustration
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Renyi DP and Gaussian Mechanism

Renyi DP [Mironov, 2017]

Let € > 0 and a > 1. A randomized algorithm A is (a, €)-Rényi
differential private or (a, )-RDP, if for any neighboring datasets
D,D' e D,

Do (A(D)[A(D) < &

where D, (-||-) is the Rényi a-divergence between two distributions.

‘ How to easily make a function DP ?

Given a function f: X — R<, the Gaussian mechanism M, defined as
follows :

Mof(') = f() +v
where v ~ N(0,02%1,). If f has Ag- (or l2-) sensitivity
Aof = max  |f(D)— f(D)]2,

D,D’neighbors

) 20-2

then M, is (a %)—RDP.
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From Wasserstein Distance ...

» Given two probability distributions ps, i on space €2 with metric
C(~, )

» For empirical distributions, the ¢-Wasserstein distance is When
s = Doy ;0x: and py = S bidxt

Wg = arg min (G, Cy)p = Z %vjcg,j
GeP i\ g

where C, is a cost matrix with ¢; j = c(x},x}) and the marginals
constraints are
P ={G e (R")""*™|Gl,, =a,G"1, =b}
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... through Sliced Wasserstein Distance ...

Statement

1D Wasserstein distance is cheap to compute

computing Sliced Wasserstein distance

» some sample random directions u € S~ uniformly
> project data on each random direction
» compute all 1d Wasserstein distance and average them

SWD{ =

k n m
IUETED TS ST I
Jj= 1=

=1

T =

4

Features
» Still a distance, efficient to compute
» Randomized algorithm through x"u ( and XU)
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. to Differentially Private SWD

‘ How to make SWD differentially private ? ‘

> add Gaussian noise to the random projection XU
» exploit post-processing DP property

Definition for empirical distributions

1< 1< 1
DP-SWD!? = EZ we <525x;uj+vj, ~ Zaxfuw;) (2)
j=1 =1 =1

Questions
» What DP guarantee do we get ?

» Do we preserve any metric structure ?
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(¢,6)-DP Property

‘ Sensitivity of XU ‘

» Assume X, X’ neighbouring datasets differing only at row ¢,
z=|x —x[2<1

> withue St zTu~ B(1/2),(d - 1)/2)

» With prob 1 — ¢

[XU-X'U|% < w(k,d) = dt3ng+5\/kgzIng Bernstein
= e kg 215 2k(d—1) CLT
d d d+2

(€,9)-DPness of XU + V
Assume V is a Gaussian matrix in R”** with entries drawn from
N(0,0?), for a > 1,
. raw(k,8 l [
XU + Vs (2lk0/2) | 109C/0) ) pp,
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Analyses of w(k,d)

k21,1, 2 [rd=17.1 -
dtTshhs+5\/kiz5In5 Bernstein

E o, z1i-s [2k(d—1)
at 176 d+2 CLT

Looking at the equation

» from term % : the higher the dimension, the smaller the sensitivity

» the smaller the number of projection, the smaller the sensitivity
» there is an imcompressible term in % for the Bernstein bound
» the CLT bound is tighter

w(k,d) =

Simulation
> ||Uz|2 with fixed z € S41 200
» d =784, k=200, and 10000 ;:Z m’\
draws of U § - /N
> §=10"" e f’// |
» Bernstein bound > 1 g 75 / \\
> CLT bound < % + 60 Y THI
N
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Metric properties of DP-SWD

‘ DP-SWD is a distance‘

» Formalization

DP,SWD{ (1, v / W (Rup * No, Ruv * Ny )ua(u)du

projection R, adding Gaussian noise is convolution with Gaussian
» All properties of a distance are preserved
» Gaussian smoothed version of original projected distributions

Comparing two Gaussians, one with varying mean

sigma_noise = 1 sigma_noise = 3

oF 0
— DP - n=1000 —DP - n=1000
—DP - n=10000 s DP - n=10000

00 02 oa 06 o8 10 00 02 o4 06 o8 1o
Gaussian Displacement Gaussian Displacement
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Application of DP-SWD

Distribution matching in ML problems

» Generative modelling
II?HD(Xtv f(Z))

» Unsupervised domain adaptation
min Le(h(9(Xs)). ys) + D(9(Xs). 9(Xe))

)

with X, ys, public labeled data from source domain, X; unlabeled
private data from target domain. h(-) the representation mapping,
g(+) the classifier.

‘ How-to make them privacy-preserving

» Clip the input space so that ||x; — x}|[2 < 1

> In domain adaptation [Lee et al., 2019] or generative model
[Deshpande et al., 2018], plug-in DP-SWD in place of SWD as
distance D.
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Experiments on domain adaptation

Settings

> Computer Vision dataset (MNIST — USPS, VisDA, Office)
» UDA : learning representation + classifier
> Baselines : DANN, DA, using SWD and DP-DANN (with gradient
clipping)
» Outcome : small loss of accuracy wrt SWD, robustness of the model
accross large range of e-DP guarantee.
L " g ———
0.9 4
Method -
Data DANN SWD © oDSP-DANN DP-SWD 08 "—__f.._ —‘Ht 4
M-U 93940 955+1 | 871+2 94.0+ 0 g _
U-M 862+ 2  84.8+2 735 4 2 83.44 2 c “A/‘—‘—_ )
VisDA | 57441 53841 49.0 + 1 47.04 1 a o o~ MNIST-USPS
D-wW 90.9+ 1 90.7% 1 88.0+ 1 90.9+ 1 B —&— USPS-MNIST
D-A 58.6+ 1 594+ 1 56.5+ 1 552+ 2 ).
A-W | 704+3  745+1 | 6871 726+ 1 oo ¢— VisDA
A-D 78.6+ 2 785+ 1 737+ 1 79.8+ 1 —a— W-D
W-A 547+ 3 59.1+ 0 56.04 1 59.0+ 1 0.5
W-D | 91140  957+1 | 634+3 926+ 1 ——— o A-W
3 2 & B 1
epsilon
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Experiments on generative modelling

» generate MNIST and FashionMNIST samples from private data
» Evaluate quality of the generated data on classification task
> same experimental setting as in DP-MERF [Harder et al., 2020].

DP-SWD DP-MERF
MNIST FashionMNIST
Method MLP LogReg MLP LogReg
SWD 87 82 7 76
GS-WGAN 79 79 65 68
DP-CGAN 60 60 50 51
DP-MERF 76 75 72 71
DP-SWD-c 7 78 67 66
DP-SWD-b 76 7 67 66
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Experiments on generative modelling

Setting

> CelebA dataset. original input 64 x 64 x 3. first application of DP
generative model on this dataset

» architecture and optimizer as in [Nguyen et al., 2020]. Latent space
of distributions to be compared 8192.

» plugged-in DP-SWD instead of SWD.
» bound choice w(k, §) strongly impacts visual quality

first row : SWD, second row DP-SWD with (left) CLT and (right) Berstein bound.
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Conclusion

‘ What we proposed

» a differentially private distance on distributions
» DP-SWD exploits random projection + Gaussian mechanism

» Seamless plug into learning models
> but ...
» introduce smoothness

On-going extension

> theoretical analysis of the Gaussian smoothed SWD

> better post-processing for generative modelling
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