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Objective of the work

Privacy Preserving Learning

I Learn from data while guaranteeing privacy..
I ... in the context of domain adaptation and generative models
I we propose a

Differentially Private Distribution Distance

How?
I Exploit the privacy property of

M(X) = XU + V,

I Make clear the ink betweenM(X) and Sliced Wasserstein Distance
I Introduce Differential Private SWD and its metric properties
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Differential Privacy
Definition [Dwork, 2008]

Let ε, δ > 0. Let A : D → Im A be a randomized algorithm, where Im A is the
image of D through A. A is (ε, δ)-differentially private, or (ε, δ)-DP, if for all
neighboring datasets D,D′ ∈ D and for all sets of outputs O ∈ Im A, the
following inequality holds :

P[A(D) ∈ O] ≤ eεP[A(D′) ∈ O] + δ

where the probability relates to the randomness of A.

Illustration
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Renyi DP and Gaussian Mechanism

Renyi DP [Mironov, 2017]

Let ε > 0 and α > 1. A randomized algorithm A is (α, ε)-Rényi
differential private or (α, ε)-RDP, if for any neighboring datasets
D,D′ ∈ D,

Dα (A(D)‖A(D′)) ≤ ε

where Dα(·‖·) is the Rényi α-divergence between two distributions.

How to easily make a function DP ?

Given a function f : X → Rd, the Gaussian mechanism Mσ defined as
follows :

Mσf(·) = f(·) + v

where v ∼ N (0, σ2Id). If f has ∆2- (or `2-) sensitivity
∆2f

.= max
D,D′neighbors

‖f(D)− f(D′)‖2,

thenMσ is
(
α,

α∆2
2f

2σ2

)
-RDP.
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From Wasserstein Distance ...

Definition
I Given two probability distributions µs, µt on space Ω with metric
c(·, ·)

I For empirical distributions, the q-Wasserstein distance is When
µs =

∑n
i=1 aiδxs

i
and µt =

∑n
i=1 biδxt

i

W q
q = arg min

G∈P

〈G,Cq〉F =
∑
i,j

γi,jc
q
i,j


where Cq is a cost matrix with ci,j = c(xsi ,xtj)q and the marginals
constraints are

P =
{

G ∈ (R+)ns×nt |G1nt = a,GT1ns = b
}
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... through Sliced Wasserstein Distance ...

Statement
1D Wasserstein distance is cheap to compute

computing Sliced Wasserstein distance
I some sample random directions u ∈ Sd−1 uniformly
I project data on each random direction
I compute all 1d Wasserstein distance and average them

SWDqq = 1
k

k∑
j=1

W q
q

(
1
n

n∑
i=1

δxs
i
>uj ,

1
m

m∑
i=1

δxt
i
>uj

)
(1)

Features
I Still a distance, efficient to compute
I Randomized algorithm through x>u ( and XU)
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... to Differentially Private SWD

How to make SWD differentially private ?

I add Gaussian noise to the random projection XU
I exploit post-processing DP property

Definition for empirical distributions

DP-SWDqq = 1
k

k∑
j=1

W q
q

(
1
n

n∑
i=1

δxi>uj+vj ,
1
m

m∑
i=1

δx′
i
>uj+v′j

)
(2)

Questions
I What DP guarantee do we get ?
I Do we preserve any metric structure ?
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(ε, δ)-DP Property

Sensitivity of XU

I Assume X, X′ neighbouring datasets differing only at row i,
z = ‖xi − x′i‖2 ≤ 1

I with u ∈ Sd−1, z>u ∼ B(1/2), (d− 1)/2)
I With prob 1− δ

‖XU−X′U‖2F ≤ w(k, δ) .=


k
d + 2

3 ln 1
δ + 2

d

√
k d−1
d+2 ln 1

δ Bernstein
k
d + z1−δ

d

√
2k(d−1)
d+2 CLT

(ε, δ)-DPness of XU + V
Assume V is a Gaussian matrix in Rn×k with entries drawn from
N (0, σ2), for α > 1,

XU + V is (αw(k,δ/2)
2σ2 + log(2/δ)

α−1 , δ)-DP.
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Analyses of w(k, δ)

w(k, δ) .=


k
d + 2

3 ln 1
δ + 2

d

√
k d−1
d+2 ln 1

δ Bernstein
k
d + z1−δ

d

√
2k(d−1)
d+2 CLT

Looking at the equation
I from term k

d : the higher the dimension, the smaller the sensitivity
I the smaller the number of projection, the smaller the sensitivity
I there is an imcompressible term in 1

δ for the Bernstein bound
I the CLT bound is tighter

Simulation
I ‖Uz‖22 with fixed z ∈ Sd−1

I d = 784, k = 200, and 10000
draws of U

I δ = 10−5

I Bernstein bound > 1
I CLT bound < k

d + 6σ
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Metric properties of DP-SWD
DP-SWD is a distance

I Formalization

DPσSWDqq(µ, ν) .=
∫
Sd−1

W q
q (Ruµ ∗ Nσ,Ruν ∗ Nσ)ud(u)du

projection Ru, adding Gaussian noise is convolution with Gaussian
I All properties of a distance are preserved
I Gaussian smoothed version of original projected distributions

Simulation
Comparing two Gaussians, one with varying mean

10 / 16



Application of DP-SWD

Distribution matching in ML problems
I Generative modelling

min
f
D(Xt, f(z))

I Unsupervised domain adaptation
min
g,h

Lc(h(g(Xs)),ys) +D(g(Xs), g(Xt))

with Xs,ys, public labeled data from source domain, Xt unlabeled
private data from target domain. h(·) the representation mapping,
g(·) the classifier.

How-to make them privacy-preserving

I Clip the input space so that ‖xi − x′i‖2 ≤ 1
I In domain adaptation [Lee et al., 2019] or generative model

[Deshpande et al., 2018], plug-in DP-SWD in place of SWD as
distance D.
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Experiments on domain adaptation

Settings
I Computer Vision dataset (MNIST → USPS, VisDA, Office)
I UDA : learning representation + classifier
I Baselines : DANN, DA, using SWD and DP-DANN (with gradient

clipping)
I Outcome : small loss of accuracy wrt SWD, robustness of the model

accross large range of ε-DP guarantee.

Methods
Data DANN SWD DP-DANN DP-SWD

M-U 93.9 ± 0 95.5 ± 1 87.1 ± 2 94.0± 0
U-M 86.2 ± 2 84.8±2 73.5 ± 2 83.4± 2
VisDA 57.4 ± 1 53.8±1 49.0 ± 1 47.0± 1
D - W 90.9± 1 90.7± 1 88.0± 1 90.9± 1
D - A 58.6± 1 59.4± 1 56.5± 1 55.2± 2
A - W 70.4± 3 74.5± 1 68.7± 1 72.6± 1
A - D 78.6± 2 78.5± 1 73.7± 1 79.8± 1
W - A 54.7± 3 59.1± 0 56.0± 1 59.0± 1
W - D 91.1± 0 95.7± 1 63.4± 3 92.6± 1
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Experiments on generative modelling

Settings
I generate MNIST and FashionMNIST samples from private data
I Evaluate quality of the generated data on classification task
I same experimental setting as in DP-MERF [Harder et al., 2020].

MNIST FashionMNIST

Method MLP LogReg MLP LogReg

SWD 87 82 77 76
GS-WGAN 79 79 65 68

DP-CGAN 60 60 50 51
DP-MERF 76 75 72 71
DP-SWD-c 77 78 67 66
DP-SWD-b 76 77 67 66

DP-SWD DP-MERF
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Experiments on generative modelling

Setting
I CelebA dataset. original input 64× 64× 3. first application of DP

generative model on this dataset
I architecture and optimizer as in [Nguyen et al., 2020]. Latent space

of distributions to be compared 8192.
I plugged-in DP-SWD instead of SWD.
I bound choice w(k, δ) strongly impacts visual quality

first row : SWD, second row DP-SWD with (left) CLT and (right) Berstein bound.
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Conclusion

What we proposed

I a differentially private distance on distributions
I DP-SWD exploits random projection + Gaussian mechanism
I Seamless plug into learning models
I but ...

I introduce smoothness

On-going extension
I theoretical analysis of the Gaussian smoothed SWD
I better post-processing for generative modelling
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