# TOWARDS OPEN AD HOC TEAMWORK USING GRAPH-BASED POLICY LEARNING

Arrasy Rahman, Niklas Höpner, Filippos Christianos, Stefano Albrecht

In 38th International Conference on Machine Learning 2021





Ad hoc teamwork :

- Control a single agent (learner)
- Maximize returns in the presence of other agents without prior coordination mechanisms

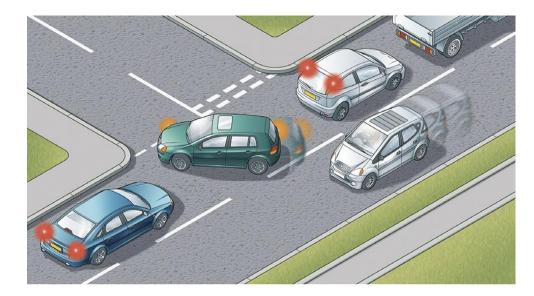
Open multiagent systems :

- Agents may leave or enter the environment anytime.
- Number of agents may change between timesteps.



### CHALLENGES FOR OPEN AD HOC TEAMWORK

- 1. Adaptation to different teammate policies
- 2. Adaptation to changing team sizes
- 3. Handling variable observation sizes





Find an optimal policy for the learner,  $\pi^{i,*}$ , characterized by:

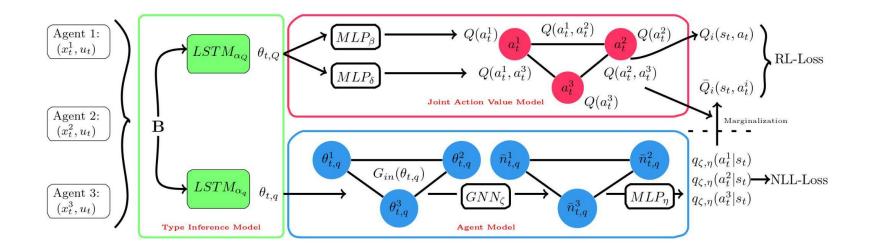
$$\forall \pi^i, s, a^i, \bar{Q}_{\pi^{i,*}}(s, a^i) \geq \bar{Q}_{\pi^i}(s, a^i)$$

with,

$$\bar{Q}_{\pi^{i}}(s,a^{i}) = \mathbb{E}_{a_{t}^{i} \sim \pi^{i}, a_{t}^{-i} \sim \pi_{t}^{-i}, P} \left[ \sum_{t=0}^{\infty} \gamma^{t} R(s_{t},a_{t}) \middle| s_{0} = s, a_{0}^{i} = a^{i} \right]$$



#### **GRAPH-BASED POLICY LEARNING (GPL)**

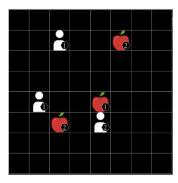




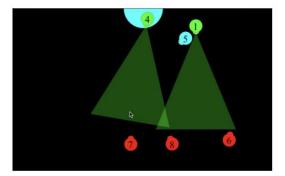
#### **EXPERIMENTS: ENVIRONMENTS**



(a) Wolfpack



(b) Level-based foraging

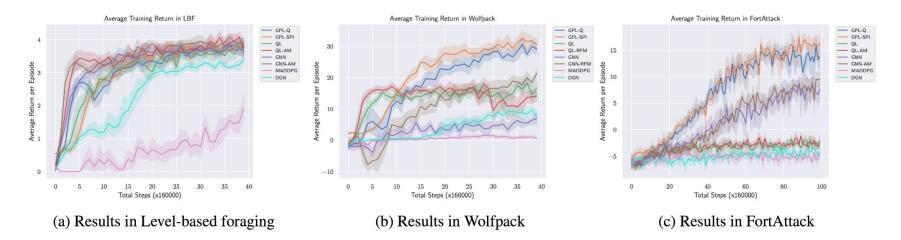


(c) FortAttack



Results under training setup

- Open process changes number of teammates between timesteps
- Up to 2 teammates at any timestep



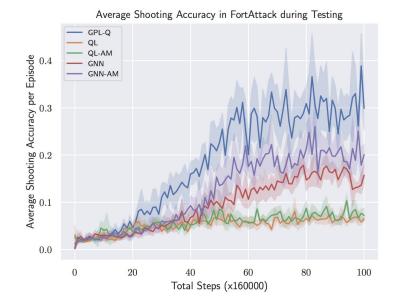
Results under generalization setup

- Open process restricts teammates to up to 4 agents at any timestep
- Only evaluate policies that delivered best performance during training

| Env.  | GPL-Q               | GPL-SPI     | QL               | QL-AM            | GNN               | GNN-AM            | DGN                       | MADDPG         |
|-------|---------------------|-------------|------------------|------------------|-------------------|-------------------|---------------------------|----------------|
| LBF   | $2.32{\pm}0.22$     | 2.40±0.16*  | $1.41 \pm 0.14$  | $1.22 \pm 0.29$  | $2.07 \pm 0.13$   | $1.80 \pm 0.11$   | $0.64\pm0.9$              | $0.91\pm0.10$  |
| Wolf. | 36.36±1.71*         | 37.61±1.69* | $20.57 \pm 1.95$ | $14.24 \pm 2.65$ | $8.88 {\pm} 1.57$ | $30.87 \pm 0.95$  | $2.18\pm0.66$             | $19.20\pm2.22$ |
| Fort. | $14.20{\pm}2.42{*}$ | 16.82±1.92* | $-3.51 \pm 0.60$ | $-3.51 \pm 1.51$ | $7.01 \pm 1.63$   | $8.12 {\pm} 0.74$ | $\textbf{-5.98} \pm 0.82$ | $-4.83\pm1.24$ |



- Which GPL component is responsible for its performance?
- How does this component yield high returns?





- Evaluate several shooting-related metrics and measure correlation with yielded returns
- Among all metrics,

$$\bar{Q}_{j,k} = \frac{\sum_{a^k} Q_{\delta}^{j,k} (a^j = \text{shoot}, a^k | s)}{|A^k|}$$

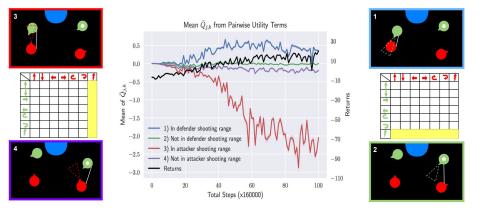
, by far has the highest correlation with returns.



- Strong correlation when *j* is a defender and *k* is an attacker
- $MLP_{\delta}$  learns that :

"If *k* is an attacker inside j's (any defender) shooting range  $\rightarrow$  High shooting values for *j* shooting *k*."

 MLP<sub>δ</sub> enables reuse of knowledge





- Can other baselines learn the effects of other agents' actions towards the learner? Turns out they can't
- Learning process in baselines
  - Learner must successfully shoot attackers itself to increase the value of shooting
  - Shooting well-trained opposition is difficult
  - Baselines do not learn the value of other teammates' actions
  - See our additional experiments in appendix.



## Towards Open Ad Hoc Teamwork Using Graph-based Policy Learning

https://arxiv.org/abs/2006.10412

Contributions:

- 1. We present the first approach to solve open ad hoc teamwork.
- 2. We demonstrate the importance of GNNs for handling environment openness.
- 3. We empirically proved that modelling the effects of other teammates' actions yields higher returns in open ad hoc teamwork.

