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Model criticism: if g # p, how do they differ?

Our Contributions

» Develop kernel Stein goodness-of-fit testing procedures for
on Riemannian manifold

» Perform corresponding interpretable model criticism

» Compare 3 different kernel Stein tests with Bahadur efficiency
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is called Fisher distribution for rotation group M = SO(d)
or matrix-Langevin distribution for matrix-valued variables.

> Normalization constant Z = [,  etr(©T X)dX can be hard to
compute, especially in high dimensions.

» May have non-vanishing boundary OM.

» Multi-variate statistical procedures for Euclidean manifold
does not apply.
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Stein Operators for Manifold

It is also natural to consider

» Zeroth Order:
AOh = h—E,[h], (3)

as a Stein operator
h can be both scalar-valued or vector-valued;

E, can't be computed with p.

Samples from :

The goodness-of-fit problem turns into two-sample problem:
compare samples from unknown data g with generated samples
from model p.
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Manifold Kernel Stein Discrepancy (mKSD)
Consider appropriate RKHS, #(€), as test function class, ¢ = 0, 1,2
mKSD((qllp) = sup  Eq[AL)f]

11,0 <
Reproducing property gives quadratic form:
mKSD()(q]|p)? = Ex gmqlh}” (x, %)]

Empirical estimate
1 .
Vi = 5 D (%)
ij

Goodness-of-fit Testing on M with mKSD

Accept Hy @ p_value >« Reject Hy: p_value < a
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Key idea: interpret the distribution difference via test locations on
M where p and g differ the most.

7/9



Interpretable Model Criticism

Key idea: interpret the distribution difference via test locations on

M where p and g differ the most.
Manifold Finite-Set Stein Discrepancy (mFSSD) is defined by fix J

test location V = {vj}“.l:

J d

1 ¢

mFSSD(q| p; V)? —d—JE Y Exgl A k(2 (4)
j=1i=1

7/9



Interpretable Model Criticism

Key idea: interpret the distribution difference via test locations on
M where p and g differ the most.

Manifold Finite-Set Stein Discrepancy (mFSSD) is defined by fix J
test location V = {vj}“.':

J d

1

mFSSD(qllpi V) = — D7 Y (ExnglAS k(% v))E, (4)
j=1i=1

Optimize the test locations w.r.t.

approximate test power:

FSSD?
V:argmaxm~7, (5)
\ UHl
where 52H1 denotes variance of

mFSSD? under H;.

7/9



Interpretable Model Criticism

Key idea: interpret the distribution difference via test locations on
M where p and g differ the most.

Manifold Finite-Set Stein Discrepancy (mFSSD) is defined by fix J
test location V = {vj}“.':
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j=1i=1
Optimize the test locations w.r.t.
approximate test power:

FSSD?
V = arg max m~7, (5)
v UHl
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where 52H1 denotes variance of

2
mFSSD” under H;. Best 10 test locations for

wind:-direction-data
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Thanks for Your Attention
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