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Key Message from This Talk

Our Tasks for Riemannian manifold M, we perform,

Goodness-of-fit test:

Model criticism: if q 6= p, how do they differ?

Our Contributions

I Develop kernel Stein goodness-of-fit testing procedures for
unnormalized densities on Riemannian manifold

I Perform corresponding interpretable model criticism

I Compare 3 different kernel Stein tests with Bahadur efficiency
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Unnormalized Densities on Manifold

Density p in (M, g) has the unnormalized form, e.g.

p(X ) ∝ etr(Θ>X ), X ∈M

is called Fisher distribution for rotation group M = SO(d)
or matrix-Langevin distribution for matrix-valued variables.

I Normalization constant Z =
∫
M etr(Θ>X )dX can be hard to

compute, especially in high dimensions.

I May have non-vanishing boundary ∂M.

I Multi-variate statistical procedures for Euclidean manifold
does not apply.
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Stein Operators for Manifold

Stein’s identity:
Ep[Apf ] = 0

For Unnormalized Densities
I First Order:

A(1)
p f =

d∑
i=1

(
∂f i

∂θi
+ f i

∂

∂θi
log(pJ)

)
, (1)

f = (f 1, . . . , f d): vector-valued test function;
I Second Order:

A(2)
p f̃ =

∑
ij

(
g ij ∂2f̃

∂θi∂θj
+ g ij ∂ f̃

∂θj
∂ log pJ

∂θi

)
(2)

f̃ scalar valued test function.

The Connection:

f i =
∑
j

g ij ∂ f̃

∂θj
.
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Stein Operators for Manifold

It is also natural to consider

I Zeroth Order:
A(0)

p h = h − Ep[h], (3)

as a Stein operator

h can be both scalar-valued or vector-valued;

Ep can’t be computed with unnormalized density p.

Samples from unnormalized density;

The goodness-of-fit problem turns into two-sample problem:
compare samples from unknown data q with generated samples
from model p.
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Manifold Kernel Stein Discrepancy (mKSD)

Consider appropriate RKHS, H(c), as test function class, c = 0, 1, 2

mKSD(c)(q‖p) = sup
‖f ‖H(c)≤1

Eq[A(c)
p f ]

Reproducing property gives quadratic form:

mKSD(c)(q‖p)2 = Ex ,x̃∼q[h
(c)
p (x , x̃)]

Empirical estimate

Ψ2
n =

1

n2

∑
i ,j

[h
(c)
p (xi , x̃j)]

Goodness-of-fit Testing on M with mKSD
Accept p_value

p-value: shaded area

Reject p_value

p-value: shaded area
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Interpretable Model Criticism

Key idea: interpret the distribution difference via test locations on
M where p and q differ the most.

Manifold Finite-Set Stein Discrepancy (mFSSD) is defined by fix J
test location V = {vj}Jj=1

mFSSD(q‖p;V )2 =
1

dJ

J∑
j=1

d∑
i=1

(Ex̃∼q[A(c)
p k(x̃ , vj)])2i , (4)

Optimize the test locations w.r.t.
approximate test power:

V = arg max
v

mFSSD2

σ̃H1

, (5)

where σ̃2H1
denotes variance of

mFSSD2 under H1.

0 1 2 3 4 5 6
x1

0
1
2
3
4
5
6

x 2

Best 10 test locations for
wind direction data
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Test Comparisons

Approximate Relative Efficiency (ARE) between two tests:
how fast the p-values of one test shrinks to 0, relatively to the
other’s (the faster the more sensitive to pick up the alternative)

Approximate Bahadur Efficiency (ABE):
the ratio between Bahadur slopes of the tests.

Case study: von-Mises Fisher distribution with scaling difference

q(x) ∝ exp{κu>x}

H0 : κ = 0, v.s. H1 : κ > 0

* von-Mises kernel with unit bandwidth:

k(x̃ , x) = exp{κx̃>x}

* E0,1: ABE of mKSD(0) and mKSD(1)

* E1,2: ABE of mKSD(1) and mKSD(2)
0 5 10 15 20

κ

4
7

10
13
16

E 1
,2

E1, 2

2.6
3.0
3.4
3.8
4.2

E 0
,1

E0, 1
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Thanks for Your Attention
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