Interpretable Stein Goodness-of-fit Tests on Riemannian Manifolds

Wenkai Xu¹ Takeru Matsuda²

¹Gatsby Computational Neuroscience Unit, London, UK ²RIKEN Center for Brain Science, Tokyo, Japan

Our Tasks for Riemannian manifold \mathcal{M} , we perform,

 $\mbox{Our Tasks}$ for Riemannian manifold ${\mathcal M}$, we perform,

Goodness-of-fit test:

 $\mbox{Our Tasks}$ for Riemannian manifold ${\mathcal M}$, we perform,

Goodness-of-fit test:

Model criticism: if $q \notin p$, how do they differ?

 $\mbox{Our Tasks}$ for Riemannian manifold ${\mathcal M}$, we perform,

Goodness-of-fit test:

Model criticism: if $q \notin p$, how do they differ?

Our Contributions

Develop kernel Stein goodness-of-fit testing procedures for unnormalized densities on Riemannian manifold

Our Tasks for Riemannian manifold \mathcal{M}_{r} we perform,

Goodness-of-fit test:

Model criticism: if $q \notin p$, how do they differ?

Our Contributions

- Develop kernel Stein goodness-of-fit testing procedures for unnormalized densities on Riemannian manifold
- Perform corresponding interpretable model criticism

 $\mbox{Our Tasks}$ for Riemannian manifold $\mathcal M$, we perform,

Goodness-of-fit test:

Model criticism: if $q \neq p$, how do they differ?

Our Contributions

- Develop kernel Stein goodness-of-fit testing procedures for unnormalized densities on Riemannian manifold
- Perform corresponding interpretable model criticism
- Compare 3 different kernel Stein tests with Bahadur efficiency

イロト 不得 トイヨト イヨト 二日

Density p in $(\mathcal{M};g)$ has the unnormalized form, e.g.

$$p(X) \neq \operatorname{etr}(\Theta^{>}X); \qquad X \ge \mathcal{M}$$

is called Fisher distribution for rotation group $\mathcal{M} = SO(d)$ or matrix-Langevin distribution for matrix-valued variables.

Density p in $(\mathcal{M};g)$ has the unnormalized form, e.g.

$$p(X) \neq \operatorname{etr}(\Theta^{>}X); \qquad X \ge M$$

is called Fisher distribution for rotation group $\mathcal{M} = SO(d)$ or matrix-Langevin distribution for matrix-valued variables.

Normalization constant $Z = \frac{R}{M} \operatorname{etr}(\Theta^{>}X) dX$ can be hard to compute, especially in high dimensions.

Density p in $(\mathcal{M};g)$ has the unnormalized form, e.g.

$$p(X) \neq \operatorname{etr}(\Theta^{>}X); \qquad X \ge M$$

is called Fisher distribution for rotation group $\mathcal{M} = SO(d)$ or matrix-Langevin distribution for matrix-valued variables.

- Normalization constant $Z = \frac{R}{M} \operatorname{etr}(\Theta^{>}X) dX$ can be hard to compute, especially in high dimensions.
- May have non-vanishing boundary @M.

Density p in $(\mathcal{M};g)$ has the unnormalized form, e.g.

$$p(X) \neq \operatorname{etr}(\Theta^{>}X); \qquad X \ge M$$

is called Fisher distribution for rotation group $\mathcal{M} = SO(d)$ or matrix-Langevin distribution for matrix-valued variables.

- Normalization constant $Z = \frac{R}{M} \operatorname{etr}(\Theta^{>}X) dX$ can be hard to compute, especially in high dimensions.
- May have non-vanishing boundary @M.
- Multi-variate statistical procedures for Euclidean manifold does not apply.

Stein's identity:

$$\mathbb{E}_{p}[A_{p}f] = 0$$

Stein's identity:

$$\mathsf{E}_{\boldsymbol{p}}[\mathcal{A}_{\boldsymbol{p}}f] = 0$$

For Unnormalized Densities First Order:

$$\mathcal{A}_{p}^{(1)}\mathbf{f} = \sum_{i=1}^{\mathcal{M}} \quad \frac{\mathscr{Q}f^{i}}{\mathscr{Q}^{i}} + f^{i}\frac{\mathscr{Q}}{\mathscr{Q}^{i}}\log(pJ) \quad ; \tag{1}$$

Stein's identity:

$$\mathsf{E}_{\boldsymbol{\rho}}[\mathcal{A}_{\boldsymbol{\rho}}f] = 0$$

For Unnormalized Densities

First Order:

$$\mathcal{A}_{p}^{(1)}\mathbf{f} = \sum_{i=1}^{\mathcal{M}} \quad \frac{\mathscr{Q}f^{i}}{\mathscr{Q}^{i}} + f^{i}\frac{\mathscr{Q}}{\mathscr{Q}^{i}}\log(pJ) \quad ; \tag{1}$$

 $\mathbf{f} = (f^1; \ldots; f^d)$: vector-valued test function;

Stein's identity:

$$\mathsf{E}_{\boldsymbol{\rho}}[\mathcal{A}_{\boldsymbol{\rho}}f] = 0$$

For Unnormalized Densities

First Order:

$$\mathcal{A}_{\mathbf{p}}^{(1)}\mathbf{f} = \sum_{i=1}^{\mathcal{M}} \quad \frac{\mathscr{Q}f^{i}}{\mathscr{Q}^{i}} + f^{i}\frac{\mathscr{Q}}{\mathscr{Q}^{i}}\log(\mathbf{p}J) \quad ; \tag{1}$$

 $\mathbf{f} = (f^1; \dots; f^d)$: vector-valued test function; Second Order:

$$\mathcal{A}_{p}^{(2)}\tilde{f} = \bigvee_{ij} \quad g^{ij}\frac{\mathscr{Q}^{2}\tilde{f}}{\mathscr{Q}^{i}\mathscr{Q}^{j}} + g^{ij}\frac{\mathscr{Q}\tilde{f}}{\mathscr{Q}^{j}}\frac{\mathscr{Q}\log pJ}{\mathscr{Q}^{i}} \qquad (2)$$

L

Stein's identity:

$$\mathsf{E}_{\boldsymbol{\rho}}[\mathcal{A}_{\boldsymbol{\rho}}f] = 0$$

For Unnormalized Densities

First Order:

$$\mathcal{A}_{\mathbf{p}}^{(1)}\mathbf{f} = \sum_{i=1}^{\mathcal{M}} \quad \frac{\mathscr{Q}f^{i}}{\mathscr{Q}^{i}} + f^{i}\frac{\mathscr{Q}}{\mathscr{Q}^{i}}\log(\mathbf{p}J) \quad ; \tag{1}$$

 $\mathbf{f} = (f^1; \dots; f^d)$: vector-valued test function; Second Order:

$$A_{p}^{(2)}\tilde{f} = \bigvee_{ij} g^{ij} \frac{e^{2}\tilde{f}}{e^{-i}e^{-j}} + g^{ij} \frac{e\tilde{f}}{e^{-j}} \frac{e\log pJ}{e^{-i}}$$
(2)

 \tilde{f} scalar valued test function.

L

Stein's identity:

$$\mathsf{E}_{\boldsymbol{\rho}}[\mathcal{A}_{\boldsymbol{\rho}}f] = 0$$

For Unnormalized Densities

First Order:

$$\mathcal{A}_{\mathbf{p}}^{(1)}\mathbf{f} = \sum_{i=1}^{\mathcal{M}} \quad \frac{\mathscr{Q}f^{i}}{\mathscr{Q}^{i}} + f^{i}\frac{\mathscr{Q}}{\mathscr{Q}^{i}}\log(\mathbf{p}J) \quad ; \tag{1}$$

 $\mathbf{f} = (f^1; \dots; f^d)$: vector-valued test function; Second Order:

$$\mathcal{A}_{p}^{(2)}\tilde{f} = \bigvee_{ij} \quad g^{ij} \frac{\mathscr{Q}^{2}\tilde{f}}{\mathscr{Q}^{-i}\mathscr{Q}^{-j}} + g^{ij} \frac{\mathscr{Q}\tilde{f}}{\mathscr{Q}^{-j}} \frac{\mathscr{Q}\log pJ}{\mathscr{Q}^{-i}} \qquad (2)$$

 \tilde{f} scalar valued test function. The Connection:

$$f^{i} = \sum_{j}^{X} g^{ij} \frac{\mathscr{Q}f}{\mathscr{Q}j}$$
:

Т

It is also natural to consider

Zeroth Order:

$$\mathcal{A}_{\boldsymbol{\rho}}^{(0)}h = h \quad \mathbb{E}_{\boldsymbol{\rho}}[h]; \tag{3}$$

It is also natural to consider

Zeroth Order:

$$\mathcal{A}_{\boldsymbol{\rho}}^{(0)}h = h \quad \mathbb{E}_{\boldsymbol{\rho}}[h]; \tag{3}$$

as a Stein operator

h can be both scalar-valued or vector-valued;

It is also natural to consider

Zeroth Order:

$$\mathcal{A}_{\boldsymbol{\rho}}^{(0)}h = h \quad \mathbb{E}_{\boldsymbol{\rho}}[h]; \tag{3}$$

as a Stein operator

h can be both scalar-valued or vector-valued;

 E_p can't be computed with unnormalized density p.

It is also natural to consider

Zeroth Order:

$$\mathcal{A}_{\boldsymbol{\rho}}^{(0)}h = h \quad \mathbb{E}_{\boldsymbol{\rho}}[h]; \tag{3}$$

as a Stein operator

h can be both scalar-valued or vector-valued;

 E_p can't be computed with unnormalized density p.

Samples from unnormalized density;

The goodness-of-fit problem turns into two-sample problem: compare samples from unknown data q with generated samples from model p.

Consider appropriate RKHS, $\mathcal{H}^{(c)}$, as test function class, c = 0/1/2 $\mathsf{mKSD}^{(c)}(qkp) = \sup_{kfk_{\mathcal{H}^{(c)}} = 1} \mathbb{E}_{q}[\mathcal{A}_{p}^{(c)}f]$

Consider appropriate RKHS, $\mathcal{H}^{(c)}$, as test function class, c = 0/1/2mKSD^(c)(qkp) = $\sup_{kfk_{\mathcal{H}^{(c)}} = 1} \mathbb{E}_q[\mathcal{A}_p^{(c)}f]$

Reproducing property gives quadratic form:

$$\mathsf{mKSD}^{(c)}(qkp)^2 = \mathbb{E}_{x;\tilde{x}} \ q[h_p^{(c)}(x;\tilde{x})]$$

Consider appropriate RKHS, $\mathcal{H}^{(c)}$, as test function class, c = 0/1/2 $\mathsf{mKSD}^{(c)}(qkp) = \sup_{kfk_{\mathcal{H}^{(c)}} = 1} \mathbb{E}_{q}[\mathcal{A}_{p}^{(c)}f]$

Reproducing property gives quadratic form:

$$\mathsf{mKSD}^{(c)}(qkp)^2 = \mathbb{E}_{x;\tilde{x}} \ q[h_p^{(c)}(x;\tilde{x})]$$

Empirical estimate

$$\Psi_n^2 = \frac{1}{n^2} \sum_{i,j}^{\times} [h_p^{(c)}(x_i; \tilde{x}_j)]$$

Consider appropriate RKHS, $\mathcal{H}^{(c)}$, as test function class, c = 0/1/2 $mKSD^{(c)}(qkp) = \sup_{kfk_{\mathcal{H}^{(c)}} = 1} \mathbb{E}_{q}[\mathcal{A}_{p}^{(c)}f]$

Reproducing property gives quadratic form:

$$\mathsf{mKSD}^{(c)}(q k p)^2 = \mathbb{E}_{x;\tilde{x}} \ q[h_p^{(c)}(x;\tilde{x})]$$

Empirical estimate

$$\Psi_n^2 = \frac{1}{n^2} \sum_{i:j}^{n} [h_p^{(c)}(x_i; \tilde{x}_j)]$$

Goodness-of- t Testing on ${\mathcal M}$ with mKSD

6/9

Key idea: interpret the distribution difference via test locations on \mathcal{M} where p and q differ the most.

Key idea: interpret the distribution difference via test locations on \mathcal{M} where p and q differ the most.

Manifold Finite-Set Stein Discrepancy (mFSSD) is defined by fix J test location $V = f v_j g_{j=1}^J$

$$\mathsf{mFSSD}(q k p; V)^2 = \frac{1}{dJ} \bigvee_{j=1}^{\mathcal{H}} \bigvee_{i=1}^{\mathcal{H}} (\mathsf{E}_{\tilde{x}} q[\mathcal{A}_p^{(c)} k(\tilde{x}; v_j)])_i^2; \quad (4)$$

Key idea: interpret the distribution difference via test locations on \mathcal{M} where p and q differ the most.

Manifold Finite-Set Stein Discrepancy (mFSSD) is defined by fix J test location $V = f v_j g_{j=1}^J$

$$\mathsf{mFSSD}(qkp; V)^2 = \frac{1}{dJ} \overset{\swarrow}{\underset{j=1}{\bigvee}} \overset{\swarrow}{\underset{j=1}{\bigvee}} (\mathsf{E}_{\tilde{x}} \ q[\mathcal{A}_p^{(c)}k(\tilde{x}; v_j)])_i^2; \quad (4)$$

Optimize the test locations w.r.t. *approximate test power:*

$$V = \arg\max_{v} \frac{\text{mFSSD}^2}{\tilde{H}_1}; \quad (5)$$

where \tilde{H}_{1}^{2} denotes variance of mFSSD² under H_{1} .

Key idea: interpret the distribution difference via test locations on \mathcal{M} where p and q differ the most.

Manifold Finite-Set Stein Discrepancy (mFSSD) is defined by fix J test location $V = f v_j g_{j=1}^J$

$$\mathsf{mFSSD}(qkp; V)^2 = \frac{1}{dJ} \overset{\swarrow}{\underset{j=1}{\bigvee}} \overset{\swarrow}{\underset{j=1}{\bigvee}} (\mathsf{E}_{\tilde{x}} \ q[\mathcal{A}_p^{(c)}k(\tilde{x}; v_j)])_i^2; \quad (4)$$

Optimize the test locations w.r.t. *approximate test power:*

$$V = \arg\max_{v} \frac{\mathsf{mFSSD}^2}{\tilde{H}_1}; \quad (5)$$

where \tilde{H}_{1}^{2} denotes variance of mFSSD² under H_{1} .

Best 10 test locations for wind direction data

7/9

Approximate Relative E ciency (ARE) between two tests: how fast the p-values of one test shrinks to 0, relatively to the other's (the faster the more sensitive to pick up the alternative)

Approximate Relative E ciency (ARE) between two tests: how fast the p-values of one test shrinks to 0, relatively to the other's (the faster the more sensitive to pick up the alternative) Approximate Bahadur E ciency (ABE):

the ratio between Bahadur slopes of the tests.

Approximate Relative E ciency (ARE) between two tests: how fast the p-values of one test shrinks to 0, relatively to the other's (the faster the more sensitive to pick up the alternative) Approximate Bahadur E ciency (ABE):

the ratio between Bahadur slopes of the tests.

Case study: von-Mises Fisher distribution with scaling difference

 $q(x) \neq \exp f \ u^{>} xg$

 $H_0: = 0;$ v.s. $H_1: > 0$

Approximate Relative E ciency (ARE) between two tests: how fast the p-values of one test shrinks to 0, relatively to the other's (the faster the more sensitive to pick up the alternative) Approximate Bahadur E ciency (ABE): the ratio between Bahadur slopes of the tests

the ratio between Bahadur slopes of the tests.

Case study: von-Mises Fisher distribution with scaling difference

 $q(x) \neq \exp f u^{>} xg$

 $H_0: = 0$; v.s. $H_1: > 0$

* von-Mises kernel with unit bandwidth:

 $k(\tilde{x}; x) = \exp f \ \tilde{x}^{>} xg$

Approximate Relative E ciency (ARE) between two tests: how fast the p-values of one test shrinks to 0, relatively to the other's (the faster the more sensitive to pick up the alternative) Approximate Bahadur E ciency (ABE): the ratio between Pahadur slopes of the tests

the ratio between Bahadur slopes of the tests.

Case study: von-Mises Fisher distribution with scaling difference

 $q(x) \neq \exp f u^{>} xg$

 $H_0: = 0;$ v.s. $H_1: > 0$

* von-Mises kernel with unit bandwidth:

 $k(\tilde{x}; x) = \exp f \ \tilde{x}^{>} xg$

- * $\mathsf{E}_{0,1}:$ ABE of $\mathsf{mKSD}^{(0)}$ and $\mathsf{mKSD}^{(1)}$
- * $E_{1,2}$: ABE of mKSD⁽¹⁾ and mKSD⁽²⁾

Thanks for Your Attention