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Limitations

Requires “semantic preserving” augmentations.

Might not be available for some application domains such as tabular data, 
graph-structured data. 
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Gaussian Noise

Let us consider X to be an 2D image. 

In this case, to maximize the similarity between 
positive pair, the network can learn just to take 
an average over the neighboring pixels to 
remove the noise.
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Other form of Mixup-based Noise:

Geometric-Mixup : 

Binary-Mixup : 
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Results

● Tabular Data, Image Data, Graph-Structured Data

● For tabular and graph structured datasets, DACL and DACL+ improves upon baselines.

● For images DACL falls short off the sota methods such as SimCLR, however 
SimCLR+DACL can improve the performance of SimCLR alone.



Theoretical Analysis

Properties of Gaussian-Noise and Mixup-Noise based Contrastive Learning in a 
binary classification task.

Contrastive loss  

We then prove that Mixup-Noise induces a better regularization effect when 
compared to Gaussian Noise

Modified classification loss+ error term



Thank You for your attention!


