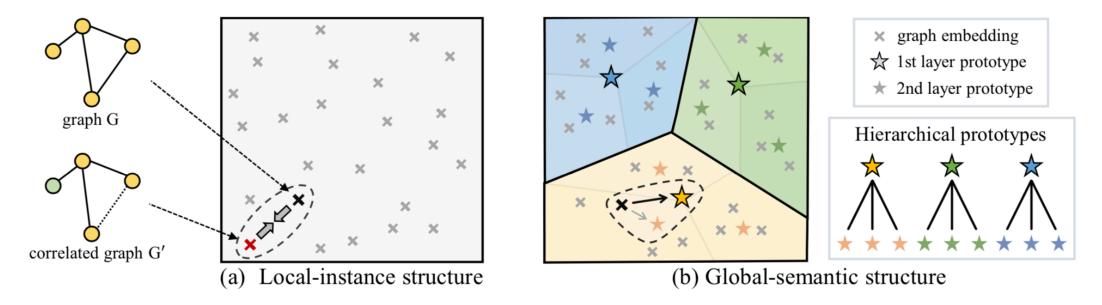
Self-supervised Graph-level Representation Learning with Local and Global Structure

Minghao Xu

Shanghai Jiao Tong University

Acknowledgements: Jian Tang, Hongyu Guo, Hang Wang, Bingbing Ni

GraphLoG – Motivation and Definition



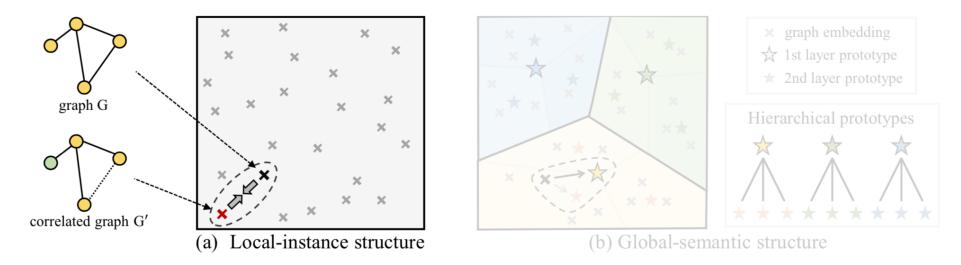
• Motivation:

- In many scientific domains, the labeled graphs are usually insufficient. self-supervised learning
- For self-supervised graph representation learning, both the *local* and *global* structure should be modeled in the latent space.

• Definition:

- > Local-instance structure: the local similarity between graph instance pairs.
- > Global-semantic structure: some global structure reflecting the clustering patterns of the data.

GraphLoG – Learning Local-instance Structure



Learning scheme:

- For a graph G, derive its *correlated counterpart* G' by masking a part of node/edge attributes.
- \triangleright Extract the graph and subgraph embeddings for G and G' via a GNN.
- > Measure the similarity of a graph/subgraph pair with the *cosine similarity*.
- > Learning through enhancing the similarity of correlated pairs and diminishing that of negative pairs:

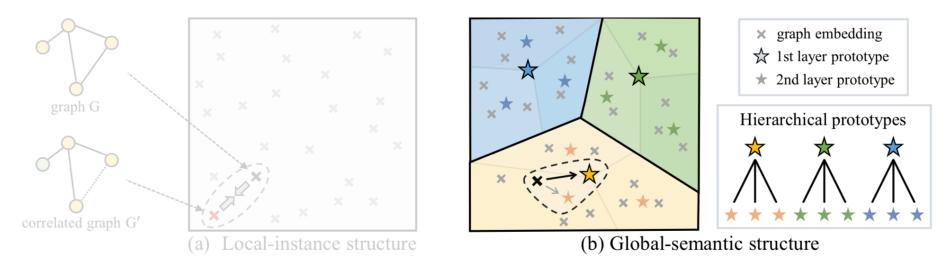
$$\mathcal{L}_{graph} = -\mathbb{E}_{(\mathcal{G}_{+}, \mathcal{G}'_{+}) \sim p(\mathcal{G}, \mathcal{G}'), (\mathcal{G}_{-}, \mathcal{G}'_{-}) \sim p_{n}(\mathcal{G}, \mathcal{G}')} \left[s(\mathcal{G}_{+}, \mathcal{G}'_{+}) - s(\mathcal{G}_{-}, \mathcal{G}'_{-}) \right],$$

$$\mathcal{L}_{sub} = -\mathbb{E}_{(\mathcal{G}_{u}, \mathcal{G}'_{u}) \sim p(\mathcal{G}_{v}, \mathcal{G}'_{v}), (\mathcal{G}_{v}, \mathcal{G}'_{w}) \sim p_{n}(\mathcal{G}_{v}, \mathcal{G}'_{v})} \left[s(\mathcal{G}_{u}, \mathcal{G}'_{u}) - s(\mathcal{G}_{v}, \mathcal{G}'_{w}) \right],$$

$$\mathcal{L}_{local} = \mathcal{L}_{graph} + \mathcal{L}_{sub}$$

$$\mathcal{L}_{sub} = -\mathbb{E}_{(\mathcal{G}_{u}, \mathcal{G}'_{u}) \sim p(\mathcal{G}_{v}, \mathcal{G}'_{v}), (\mathcal{G}_{v}, \mathcal{G}'_{w}) \sim p_{n}(\mathcal{G}_{v}, \mathcal{G}'_{v})} \left[s(\mathcal{G}_{u}, \mathcal{G}'_{u}) - s(\mathcal{G}_{v}, \mathcal{G}'_{w}) \right],$$

GraphLoG – Learning Global-semantic Structure



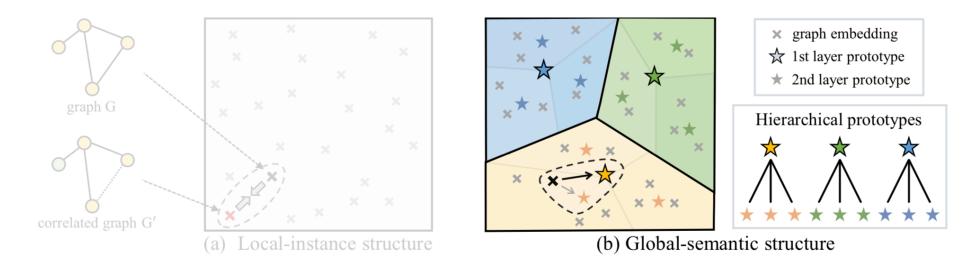
• Problem formulation: optimizing a latent variable model

- > Observed data **G**: a set of unlabeled graphs.
- Model parameters:
 - a. The GNN's parameters θ ,
 - b. Hierarchical prototypes C: the representative cluster embeddings structured as a set of trees.
- > Latent variables **Z**: the prototype assignments for all graph samples.

• Learning objective:

Maximize the complete data likelihood governed by model parameters, i.e. $p(\mathbf{G}, \mathbf{Z} | \theta, \mathbf{C})$, via an online EM algorithm.

GraphLoG – online EM algorithm for global structure modeling



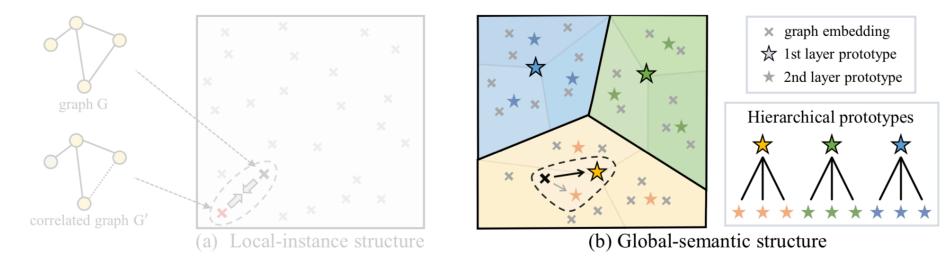
• E-step:

Sample a mini-batch $\tilde{\mathbf{G}}$ and estimate the posterior distribution of latent variables in a factorized way:

$$p(\widetilde{\mathbf{Z}}|\widetilde{\mathbf{G}}, \theta_{t-1}, \mathbf{C}_{t-1}) = \prod_{n=1}^{N} p(z_{\mathcal{G}_n}|\mathcal{G}_n, \theta_{t-1}, \mathbf{C}_{t-1}),$$

For each graph G_n in the mini-batch, sample a latent variable \hat{z}_{G_n} for the Monte Carlo estimation in the M-step.

GraphLoG – online EM algorithm for global structure modeling



• M-step:

- Maximize the expected log-likelihood on mini-batch: $\widetilde{Q}(\theta, \mathbf{C}) \approx \log p(\widetilde{\mathbf{G}}, \widetilde{\mathbf{Z}}_{est} | \theta, \mathbf{C})$
- > Define the likelihoods with *energy-based formulation*:

$$p(\mathcal{G}, z_{\mathcal{G}}|\theta, \mathbf{C}) = \frac{1}{Z(\theta, \mathbf{C})} \exp\left(f(h_{\mathcal{G}}, z_{\mathcal{G}})\right), \qquad f(h_{\mathcal{G}}, z_{\mathcal{G}}) = \sum_{l=1}^{L_p} s(h_{\mathcal{G}}, z_{\mathcal{G}}^l) + \sum_{l=1}^{L_p-1} s(z_{\mathcal{G}}^l, z_{\mathcal{G}}^{l+1}).$$

> Define objective function based on *NCE*, which contrasts the positive observed-latent variable pair with the negative pairs sampled from some noise distribution:

$$\mathcal{L}_{\text{global}} = -\mathbb{E}_{(\mathcal{G}^+, z_{\mathcal{G}}^+) \sim p(\mathcal{G}, z_{\mathcal{G}})} \Big\{ \log \tilde{p}(\mathcal{G}^+, z_{\mathcal{G}}^+ | \theta, \mathbf{C}) - \mathbb{E}_{(\mathcal{G}^-, z_{\mathcal{G}}^-) \sim p_n(\mathcal{G}, z_{\mathcal{G}})} \Big[\log \tilde{p}(\mathcal{G}^-, z_{\mathcal{G}}^- | \theta, \mathbf{C}) \Big] \Big\}$$

GraphLoG – Model Optimization & Downstream Application

Algorithm 1 Optimization Algorithm of GraphLoG.

Input: Unlabeled graph data set G, the number of learning steps T.

Output: Pre-trained GNN model GNN_{θ_T} .

Pre-train GNN with local objective function (Eq. 9).

Initialize model parameters θ_0 and \mathbf{C}_0 .

for
$$t = 1$$
 to T do

Sample a mini-batch $\widetilde{\mathbf{G}}$ from \mathbf{G} .

 \Diamond *E-step*:

Sample latent variables $\widetilde{\mathbf{Z}}_{est}$ with $GNN_{\theta_{t-1}}$ and \mathbf{C}_{t-1} .

 \Diamond *M-step*:

Update model parameters:

$$\theta_t \leftarrow \theta_{t-1} - \nabla_{\theta}(\mathcal{L}_{local} + \mathcal{L}_{global}),$$

 $\mathbf{C}_t \leftarrow \mathbf{C}_{t-1} - \nabla_{\mathbf{C}}(\mathcal{L}_{local} + \mathcal{L}_{global}).$

end for

• Model optimization:

- Pre-train with only the local objective for one epoch.
- > Conduct E-step and M-step iteratively.
- In the optimization of M-step, we also add the local objective function for *preserving local smoothness* when pursuing the global structure.

• Downstream application:

- > Pre-train a GNN by GraphLoG on *massive* unlabeled graphs.
- > Append a linear classifier and fine-tune on a small set of labeled graphs.

GraphLoG – Experimental Results

Table 1. Test ROC-AUC (%) on downstream molecular property prediction benchmarks.

Methods	BBBP	Tox21	ToxCast	SIDER	ClinTox	MUV	HIV	BACE	Avg
Random	65.8 ± 4.5	74.0 ± 0.8	63.4 ± 0.6	57.3 ± 1.6	58.0 ± 4.4	71.8 ± 2.5	75.3 ± 1.9	70.1 ± 5.4	67.0
EdgePred (2016)	67.3 ± 2.4	76.0 ± 0.6	64.1 ± 0.6	60.4 ± 0.7	64.1 ± 3.7	74.1 ± 2.1	76.3 ± 1.0	79.9 ± 0.9	70.3
InfoGraph (2019)	68.2 ± 0.7	75.5 ± 0.6	63.1 ± 0.3	59.4 ± 1.0	70.5 ± 1.8	75.6 ± 1.2	77.6 ± 0.4	78.9 ± 1.1	71.1
AttrMasking (2019)	64.3 ± 2.8	76.7 ± 0.4	64.2 ± 0.5	61.0 ± 0.7	71.8 ± 4.1	74.7 ± 1.4	77.2 ± 1.1	79.3 ± 1.6	71.1
ContextPred (2019)	68.0 ± 2.0	75.7 ± 0.7	63.9 ± 0.6	60.9 ± 0.6	65.9 ± 3.8	75.8 ± 1.7	77.3 ± 1.0	79.6 ± 1.2	70.9
GraphPartition (2020b)	70.3 ± 0.7	75.2 ± 0.4	63.2 ± 0.3	61.0 ± 0.8	64.2 ± 0.5	75.4 ± 1.7	77.1 ± 0.7	79.6 ± 1.8	70.8
GraphCL (2020a)	69.5 ± 0.5	75.4 ± 0.9	63.8 ± 0.4	60.8 ± 0.7	70.1 ± 1.9	74.5 ± 1.3	77.6 ± 0.9	78.2 ± 1.2	71.3
GraphLoG (ours)	72.5 ± 0.8	75.7 ± 0.5	63.5 ± 0.7	61.2 ± 1.1	76.7 ± 3.3	76.0 ± 1.1	77.8 ± 0.8	83.5 ± 1.2	73.4

Table 2. Test ROC-AUC (%) on downstream biological function prediction benchmark.

Methods	ROC-AUC (%)
Random	64.8 ± 1.0
EdgePred (Kipf & Welling, 2016)	70.5 ± 0.7
InfoGraph (Sun et al., 2019)	70.7 ± 0.5
AttrMasking (Hu et al., 2019)	70.5 ± 0.5
ContextPred (Hu et al., 2019)	69.9 ± 0.3
GraphPartition (You et al., 2020b)	71.0 ± 0.2
GraphCL (You et al., 2020a)	71.2 ± 0.6
GraphLoG (ours)	72.9 ± 0.7

Table 3. Test ROC-AUC (%) of different methods under four GNN architectures. (All results are reported on biology domain.)

Methods	GCN	GraphSAGE	GAT	GIN	
Random	63.2 ± 1.0	65.7 ± 1.2	68.2 ± 1.1	64.8 ± 1.0	
EdgePred (2016)	68.0 ± 0.9	67.8 ± 0.7	67.9 ± 1.3	70.5 ± 0.7	
AttrMasking (2019)	68.3 ± 0.8	69.2 ± 0.6	67.3 ± 0.8	70.5 ± 0.5	
ContextPred (2019)	67.6 ± 0.3	69.6 ± 0.6	66.9 ± 1.2	69.9 ± 0.3	
GraphCL (2020a)	69.1 ± 0.9	70.2 ± 0.4	68.4 ± 1.2	71.2 ± 0.6	
GraphLoG (ours)	71.2 ± 0.6	70.8 ± 0.8	69.5 ± 1.0	72.9 ± 0.7	

GraphLoG – Visualization

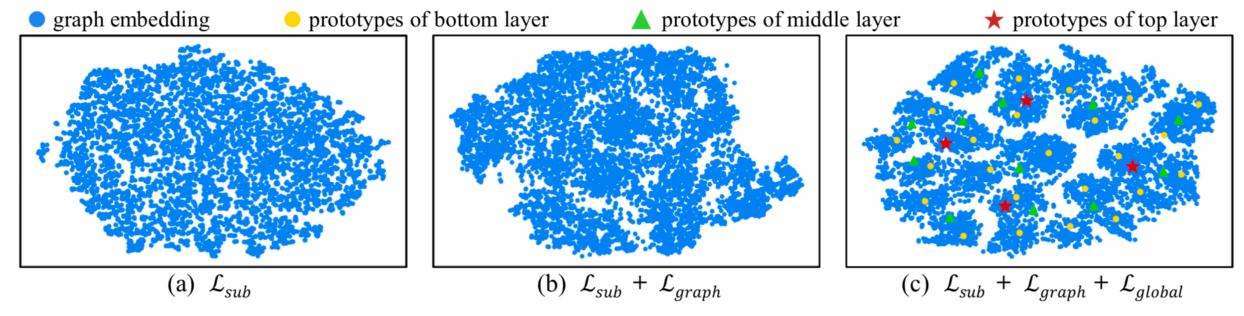


Figure 2. The t-SNE visualization on ZINC15 database (i.e. the pre-training data set for chemistry domain).

Thanks for watching!