Self-supervised Graph-level Representation Learning with Local and Global Structure ### Minghao Xu Shanghai Jiao Tong University Acknowledgements: Jian Tang, Hongyu Guo, Hang Wang, Bingbing Ni # GraphLoG – Motivation and Definition #### • Motivation: - In many scientific domains, the labeled graphs are usually insufficient. self-supervised learning - For self-supervised graph representation learning, both the *local* and *global* structure should be modeled in the latent space. #### • Definition: - > Local-instance structure: the local similarity between graph instance pairs. - > Global-semantic structure: some global structure reflecting the clustering patterns of the data. # GraphLoG – Learning Local-instance Structure #### Learning scheme: - For a graph G, derive its *correlated counterpart* G' by masking a part of node/edge attributes. - \triangleright Extract the graph and subgraph embeddings for G and G' via a GNN. - > Measure the similarity of a graph/subgraph pair with the *cosine similarity*. - > Learning through enhancing the similarity of correlated pairs and diminishing that of negative pairs: $$\mathcal{L}_{graph} = -\mathbb{E}_{(\mathcal{G}_{+}, \mathcal{G}'_{+}) \sim p(\mathcal{G}, \mathcal{G}'), (\mathcal{G}_{-}, \mathcal{G}'_{-}) \sim p_{n}(\mathcal{G}, \mathcal{G}')} \left[s(\mathcal{G}_{+}, \mathcal{G}'_{+}) - s(\mathcal{G}_{-}, \mathcal{G}'_{-}) \right],$$ $$\mathcal{L}_{sub} = -\mathbb{E}_{(\mathcal{G}_{u}, \mathcal{G}'_{u}) \sim p(\mathcal{G}_{v}, \mathcal{G}'_{v}), (\mathcal{G}_{v}, \mathcal{G}'_{w}) \sim p_{n}(\mathcal{G}_{v}, \mathcal{G}'_{v})} \left[s(\mathcal{G}_{u}, \mathcal{G}'_{u}) - s(\mathcal{G}_{v}, \mathcal{G}'_{w}) \right],$$ $$\mathcal{L}_{local} = \mathcal{L}_{graph} + \mathcal{L}_{sub}$$ $$\mathcal{L}_{sub} = -\mathbb{E}_{(\mathcal{G}_{u}, \mathcal{G}'_{u}) \sim p(\mathcal{G}_{v}, \mathcal{G}'_{v}), (\mathcal{G}_{v}, \mathcal{G}'_{w}) \sim p_{n}(\mathcal{G}_{v}, \mathcal{G}'_{v})} \left[s(\mathcal{G}_{u}, \mathcal{G}'_{u}) - s(\mathcal{G}_{v}, \mathcal{G}'_{w}) \right],$$ # GraphLoG – Learning Global-semantic Structure #### • Problem formulation: optimizing a latent variable model - > Observed data **G**: a set of unlabeled graphs. - Model parameters: - a. The GNN's parameters θ , - b. Hierarchical prototypes C: the representative cluster embeddings structured as a set of trees. - > Latent variables **Z**: the prototype assignments for all graph samples. #### • Learning objective: Maximize the complete data likelihood governed by model parameters, i.e. $p(\mathbf{G}, \mathbf{Z} | \theta, \mathbf{C})$, via an online EM algorithm. # GraphLoG – online EM algorithm for global structure modeling #### • E-step: Sample a mini-batch $\tilde{\mathbf{G}}$ and estimate the posterior distribution of latent variables in a factorized way: $$p(\widetilde{\mathbf{Z}}|\widetilde{\mathbf{G}}, \theta_{t-1}, \mathbf{C}_{t-1}) = \prod_{n=1}^{N} p(z_{\mathcal{G}_n}|\mathcal{G}_n, \theta_{t-1}, \mathbf{C}_{t-1}),$$ For each graph G_n in the mini-batch, sample a latent variable \hat{z}_{G_n} for the Monte Carlo estimation in the M-step. # GraphLoG – online EM algorithm for global structure modeling #### • M-step: - Maximize the expected log-likelihood on mini-batch: $\widetilde{Q}(\theta, \mathbf{C}) \approx \log p(\widetilde{\mathbf{G}}, \widetilde{\mathbf{Z}}_{est} | \theta, \mathbf{C})$ - > Define the likelihoods with *energy-based formulation*: $$p(\mathcal{G}, z_{\mathcal{G}}|\theta, \mathbf{C}) = \frac{1}{Z(\theta, \mathbf{C})} \exp\left(f(h_{\mathcal{G}}, z_{\mathcal{G}})\right), \qquad f(h_{\mathcal{G}}, z_{\mathcal{G}}) = \sum_{l=1}^{L_p} s(h_{\mathcal{G}}, z_{\mathcal{G}}^l) + \sum_{l=1}^{L_p-1} s(z_{\mathcal{G}}^l, z_{\mathcal{G}}^{l+1}).$$ > Define objective function based on *NCE*, which contrasts the positive observed-latent variable pair with the negative pairs sampled from some noise distribution: $$\mathcal{L}_{\text{global}} = -\mathbb{E}_{(\mathcal{G}^+, z_{\mathcal{G}}^+) \sim p(\mathcal{G}, z_{\mathcal{G}})} \Big\{ \log \tilde{p}(\mathcal{G}^+, z_{\mathcal{G}}^+ | \theta, \mathbf{C}) - \mathbb{E}_{(\mathcal{G}^-, z_{\mathcal{G}}^-) \sim p_n(\mathcal{G}, z_{\mathcal{G}})} \Big[\log \tilde{p}(\mathcal{G}^-, z_{\mathcal{G}}^- | \theta, \mathbf{C}) \Big] \Big\}$$ # GraphLoG – Model Optimization & Downstream Application #### Algorithm 1 Optimization Algorithm of GraphLoG. **Input:** Unlabeled graph data set G, the number of learning steps T. **Output:** Pre-trained GNN model GNN_{θ_T} . Pre-train GNN with local objective function (Eq. 9). Initialize model parameters θ_0 and \mathbf{C}_0 . for $$t = 1$$ to T do Sample a mini-batch $\widetilde{\mathbf{G}}$ from \mathbf{G} . \Diamond *E-step*: Sample latent variables $\widetilde{\mathbf{Z}}_{est}$ with $GNN_{\theta_{t-1}}$ and \mathbf{C}_{t-1} . \Diamond *M-step*: Update model parameters: $$\theta_t \leftarrow \theta_{t-1} - \nabla_{\theta}(\mathcal{L}_{local} + \mathcal{L}_{global}),$$ $\mathbf{C}_t \leftarrow \mathbf{C}_{t-1} - \nabla_{\mathbf{C}}(\mathcal{L}_{local} + \mathcal{L}_{global}).$ end for #### • Model optimization: - Pre-train with only the local objective for one epoch. - > Conduct E-step and M-step iteratively. - In the optimization of M-step, we also add the local objective function for *preserving local smoothness* when pursuing the global structure. #### • Downstream application: - > Pre-train a GNN by GraphLoG on *massive* unlabeled graphs. - > Append a linear classifier and fine-tune on a small set of labeled graphs. # GraphLoG – Experimental Results | Table 1. Test ROC-AUC (%) on downstream molecular property prediction benchmarks. | |---| |---| | Methods | BBBP | Tox21 | ToxCast | SIDER | ClinTox | MUV | HIV | BACE | Avg | |------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------| | Random | 65.8 ± 4.5 | 74.0 ± 0.8 | 63.4 ± 0.6 | 57.3 ± 1.6 | 58.0 ± 4.4 | 71.8 ± 2.5 | 75.3 ± 1.9 | 70.1 ± 5.4 | 67.0 | | EdgePred (2016) | 67.3 ± 2.4 | 76.0 ± 0.6 | 64.1 ± 0.6 | 60.4 ± 0.7 | 64.1 ± 3.7 | 74.1 ± 2.1 | 76.3 ± 1.0 | 79.9 ± 0.9 | 70.3 | | InfoGraph (2019) | 68.2 ± 0.7 | 75.5 ± 0.6 | 63.1 ± 0.3 | 59.4 ± 1.0 | 70.5 ± 1.8 | 75.6 ± 1.2 | 77.6 ± 0.4 | 78.9 ± 1.1 | 71.1 | | AttrMasking (2019) | 64.3 ± 2.8 | 76.7 ± 0.4 | 64.2 ± 0.5 | 61.0 ± 0.7 | 71.8 ± 4.1 | 74.7 ± 1.4 | 77.2 ± 1.1 | 79.3 ± 1.6 | 71.1 | | ContextPred (2019) | 68.0 ± 2.0 | 75.7 ± 0.7 | 63.9 ± 0.6 | 60.9 ± 0.6 | 65.9 ± 3.8 | 75.8 ± 1.7 | 77.3 ± 1.0 | 79.6 ± 1.2 | 70.9 | | GraphPartition (2020b) | 70.3 ± 0.7 | 75.2 ± 0.4 | 63.2 ± 0.3 | 61.0 ± 0.8 | 64.2 ± 0.5 | 75.4 ± 1.7 | 77.1 ± 0.7 | 79.6 ± 1.8 | 70.8 | | GraphCL (2020a) | 69.5 ± 0.5 | 75.4 ± 0.9 | 63.8 ± 0.4 | 60.8 ± 0.7 | 70.1 ± 1.9 | 74.5 ± 1.3 | 77.6 ± 0.9 | 78.2 ± 1.2 | 71.3 | | GraphLoG (ours) | 72.5 ± 0.8 | 75.7 ± 0.5 | 63.5 ± 0.7 | 61.2 ± 1.1 | 76.7 ± 3.3 | 76.0 ± 1.1 | 77.8 ± 0.8 | 83.5 ± 1.2 | 73.4 | *Table 2.* Test ROC-AUC (%) on downstream biological function prediction benchmark. | Methods | ROC-AUC (%) | |------------------------------------|----------------| | Random | 64.8 ± 1.0 | | EdgePred (Kipf & Welling, 2016) | 70.5 ± 0.7 | | InfoGraph (Sun et al., 2019) | 70.7 ± 0.5 | | AttrMasking (Hu et al., 2019) | 70.5 ± 0.5 | | ContextPred (Hu et al., 2019) | 69.9 ± 0.3 | | GraphPartition (You et al., 2020b) | 71.0 ± 0.2 | | GraphCL (You et al., 2020a) | 71.2 ± 0.6 | | GraphLoG (ours) | 72.9 ± 0.7 | Table 3. Test ROC-AUC (%) of different methods under four GNN architectures. (All results are reported on biology domain.) | Methods | GCN | GraphSAGE | GAT | GIN | | |--------------------|----------------|----------------|----------------|----------------|--| | Random | 63.2 ± 1.0 | 65.7 ± 1.2 | 68.2 ± 1.1 | 64.8 ± 1.0 | | | EdgePred (2016) | 68.0 ± 0.9 | 67.8 ± 0.7 | 67.9 ± 1.3 | 70.5 ± 0.7 | | | AttrMasking (2019) | 68.3 ± 0.8 | 69.2 ± 0.6 | 67.3 ± 0.8 | 70.5 ± 0.5 | | | ContextPred (2019) | 67.6 ± 0.3 | 69.6 ± 0.6 | 66.9 ± 1.2 | 69.9 ± 0.3 | | | GraphCL (2020a) | 69.1 ± 0.9 | 70.2 ± 0.4 | 68.4 ± 1.2 | 71.2 ± 0.6 | | | GraphLoG (ours) | 71.2 ± 0.6 | 70.8 ± 0.8 | 69.5 ± 1.0 | 72.9 ± 0.7 | | # GraphLoG – Visualization Figure 2. The t-SNE visualization on ZINC15 database (i.e. the pre-training data set for chemistry domain). # Thanks for watching!