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The Model

Main Computational Model

We introduced the notion of a unitary branching program (UBP).
I Builds on the notion of a program over a monoid defined by Barrington.
I A slightly different acceptance condition.

Computational power.
I Constant-dimension UBPs generalize the traditional model of

constant-width BPs.
I Therefore, any function computable by polynomial-size circuits of

logarithmic depth can be computed by a constant dimension UBP of
polynomial length.

Given the power of this model, nontrivial lower bounds are hard to
obtain.

F. Andino, M. Kokkou, M. Oliveira, F. Vadiee Unitary Branching Programs: Learnability and Lower Bounds 7 / 14



The Model

Some Quantitative Results

Ω( n2

k2 log n
) lower bound on the length of UBPs computing the n-bit

element distinctness function.

Any binary function f : {0, 1}n → {0, 1} computable by a read-once
dimension-k δ-gapped UBP can be represented by a DFA with(
n
δ

)O(k2)
states.

The class of dimension-k read-once δ-gapped UBPs of class size 2

can be exactly learned with
(
n
δ

)O(k2)
queries using the representation

class of DFAs.

The n-bit triangle-freeness function requires read-once δ-gapped
UBPs of dimension k = Ω(

√
n/(log n

δ )).
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Learning UBPs Consistent with Datasets

A Heuristic for Learning UBPs

The set of unitary matrices of dimension k forms a group that has the
structure of a compact connected manifold known as the complex
Stiefel manifold Vk(Ck).

A branching program with l instructions, alphabet size s and class
size c can be viewed as a point in Vk(Ck)l ·s+c .

We formulate the problem of learning a UBP consistent with a given
dataset as a minimization problem over this manifold.
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Learning UBPs Consistent with Datasets

Improvements

Ideally, we would like to compute an optimal solution using
off-the-shelf tools for Riemannian gradient descent. In practice this is
too slow.

Speed up the process significantly by using...
I local optimization: Riemannian gradient descent is applied to a small

window of instructions at a time (a much smaller space).
I pre-computation: allows us to evaluate intermediate UBPs against the

input dataset only at the beginning of each window optimization cycle.

Implementation:
I LUBP: Learning Unitary Branching Programs
I Source code: https://github.com/AutoProving/LUBP
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Experimental Results

Experimental Results
n-dataset: n positive strings and n negative strings from {0, 1}n. We refer
to n as the size of the dataset.
Point (n, t): t is the average time to learn a read-once dimension-3 UBP
consistent with a randomly sampled n-dataset (10 sampled datasets) with a
given error tolerance.

Yellow Line: All datasets were learned with at most 2% error. Purple Line:
Almost all datasets were learned with 0% error. Except one dataset of size
512 (average taken over 9 datasets) and 2 datasets of size 1024 (average
taken over 8 datasets).
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Open Problems

Open Problems

Analytic proof of convergence for the task of learning dimension-3
UBPs consistent with a given n-dataset?

In the opposite direction, an n-dataset that requires super-constant
dimension when represented by read-once UBPs?

Polynomial dimension lower-bounds for non-gapped read-once UBPs?
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