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Introduction

Symmetric Stochastic Block Model (SBM)

» Model setup

» (Ground Truth) Let H* € {0,1}"** denote a clustering matrix
representing a partition of a vertex set V of n nodes into K
equal-sized communities.
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Symmetric Stochastic Block Model (SBM)

» Model setup

» (Ground Truth) Let H* € {0,1}"** denote a clustering matrix
representing a partition of a vertex set V of n nodes into K
equal-sized communities.

» (Observed Graph) A graph G has the vertex set V and the
elements {a;;}1<i<j<n Of its adjacency matrix A is generated
independently as follows:

T
> If vertices i, j belong to the same community, i.e., h; hj =1,
they are connected with probability p, i.e.,

1, wp.p,
@i =9, ( )-
. wp.1-p,

» If 7,5 belong to different communities, i.e., h;“Thj =0,

I

where h; denotes the i-th row of H*, p,q € [0,1], and p > q.
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» If 7,5 belong to different communities, i.e., h;“Thj =0,
where h; denotes the i-th row of H*, p,q € [0,1], and p > q.

» (Exact Recovery) Recover the underlying communities exactly, i.e.,
H*Q for any Q € Ik, with high probability.
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Introduction

Maximum Likelihood (ML) Formulation

» According to [Amini et al., 2018], the ML estimator of H*
in the symmetric SBM is the solution of

max {(H, AH) : Hlx = 1,, H"1, = mlx, H € {0,1}"*}.

— H1g =1, requires each vertex to belong to only one cluster.
— HT1, = mlk requires all clusters to be of equal size, where
m = n/K is the cluster size.

The objective is to maximize

NP-hard in the worst-case.
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The objective is to maximize

NP-hard in the worst-case.

» Logarithmic sparsity regime of the SBM, i.e.,
__alogn  Blogn

n n
for some constants a > 3 > 0.

» Fact [Abbe and Sandon, 2015]. In the symmetric SBM,
exact recovery is impossible if \/a — /B < VK, while it is
possible if \/a — /B > VK (the information-theoretic limit).
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Main Results

Projected Power Method (PPM) with Mild Initialization

> Let H={H cR™X: Hlx =1,, H 1, = mlx, H € {0,1}"*¥}.
For any C € R™, let

T(C)=argmin{|H—-Cl|r:H€cH}. (D
» Proposition. Problem (1) is equivalent to a minimum-cost

assignment problem, which can be solved in O(K?nlogn)
time.

» The projected power iterations take the form
H*' ¢ T(AH"), forall k> 1. (2)
» Initialization condition
H® € M, i s.t. Join |H® — H*Q||r < 6v/n, (3)
where 0 is a specified constant and M, x, IIx denotes the

collection of all clustering matrices and all K x K permutation
matrices, respectively.
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Main Results

Master Theorem (Informal)

» Theorem. Suppose that the following hold:
(i) (Data input) Let A ~ SBM(H*,n,K,p,q).
(ii) (Degree requirement) p = alogn/n, ¢ = Blogn/n, and

Vva—+vB> VK.
(i) (Sampling requirement) n is sufficiently large.
The following statement holds with probability at least
1 —n~ M If the initial point H satisfies the partial recovery

condition in (3) with a proper 8, PPM outputs a true partition
in O(logn/loglogn) projected power iterations.
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(i) (Data input) Let A ~ SBM(H*,n,K,p,q).
(ii) (Degree requirement) p = alogn/n, ¢ = Blogn/n, and
Va— B> VK.

(i) (Sampling requirement) n is sufficiently large.
The following statement holds with probability at least
1 —n~ M If the initial point H satisfies the partial recovery
condition in (3) with a proper 8, PPM outputs a true partition
in O(logn/loglogn) projected power iterations.

» Corollary. Consider the same setting as above. It holds with

probability at least 1 — n=%®) that PPM outputs a true
partition in O(nlog®n/loglogn) time.
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Main Results

Comments on the Master Theorem

» While the ML formulation is NP-hard in the worst case, the
assumption that A arises from the symmetric SBM allows us
to conduct an average-case analysis.

» The total time complexity of the proposed method is
nearly-linear, which is competitive with those of the most
efficient methods in the literature.
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Main Results

Thank Youl
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