Estimating $\alpha\text{-Rank}$ from A Few Entries with Low Rank Matrix Completion

Yali Du*1, Xue Yan*2, Xu Chen3, Jun Wang1, Haifeng Zhang2

¹University College London, ²Institute of Automation, CAS, ³Renmin University of China

June 21, 2021

Background

- Multi-agent evaluation aims at the assessment of an agent's strategy on the basis of interaction with others.
- Renowned evaluation algorithms: Elo rating system [Elo78], α -rank [Omi+19].
- $\alpha\text{-}\mathbf{rank}$ for two-player game with a single population:
 - build Markov transitive matrix according to payoff *M*;

$$\Sigma_{i,j} = \begin{cases} \begin{array}{l} \eta rac{1 - \exp\left(-lpha(\mathsf{M}_{ji} - \mathsf{M}_{ij})
ight)}{1 - \exp\left(-lpha
ho(\mathsf{M}_{ji} - \mathsf{M}_{ij})
ight)} & ext{ if } \mathsf{M}_{ji} \neq \mathsf{M}_{ij} \\ rac{\eta}{
ho} & ext{ otherwise } \end{cases}$$

- compute the invariant distribution π ;
- return the ranking of strategies according to π .

Motivation:

- Repeated strategies may exist in the empirical games.
- Agents who have similar skills might perform similarly.
- Rowland et al. estimate all pairs, which is computationally heavy.

Game	# policies	rank	k
3-move parity game 2	160	14	9
Blotto	1001	50	16
hex(board_size=3)	766	764	232
Disc game	1000	2	2
Normal Bernoulli game	1000	1000	499
Elo game	1000	38	2
Random game of skill	1000	1000	515
Transitive game	1000	2	2
Triangular game	1000	1000	137
AlphaStar	888	888	238
tic_tac_toe	880	880	285
Kuhn-poker	64	64	24

We need to remove the necessity of exhaustively comparing all strategy pairs.

Our Algorithms

We are motivated to consider low-rank property of payoff matrices. The overall architecture of OptEval

We propose two algorithms with noise-free and noisy payoffs.

Theorem (Noise-free evaluations)

Let $\Omega \subseteq [n] \times [n]$ be a randomly selected set of pairs to be evaluated, then there exists a constant C such that if Ω satisfies

$$|\Omega| \ge Cnr\kappa^2 \max\left\{\mu_0 \log n, \mu^2 r \kappa^4\right\},$$

then we can obtain the exact invariant distribution with high probability.

Theorem (Noisy evaluations)

Let Ω be a sample operator, for each pair $(i,j) \in \Omega$, let \hat{M}_{ij} be an empirical payoff constructed by taking K i.i. d. interactions of player i and j. There exist constants C and C' such that if the number of randomly selected pairs m satisfies $|\Omega| \ge C\kappa^2 n \max(\mu_0 r \log(n), \mu_0^2 r^2 \kappa^4, \mu_1^2 r^2 \kappa^4)$ and K satisfies $K \ge \frac{2592M_{\max}^2 \log(2mn^3)L(\alpha, M_{\max})^2 \left(\sum\limits_{i=1}^{n-1} {n \choose i} j^i n\right)^2 C'^2 \kappa^4 rn^2}{\epsilon^2 g(\alpha, \eta, p, M_{\max})^2}$, Then $\max_{i \in [n]} |\bar{\pi}(i) - \pi(i)| \le \epsilon$ is satisfied with probability at least $1 - \frac{2}{n^3}$.

イロン イヨン イヨン

Experiments I

Empirical sample complexity: Results on twenty $n \times n$ **Gaussian games** with n = 10, 20, ..., 200, r = 5. (a) the empirical sampling complexity of OptEval-1 when $\epsilon \le 10^{-4}/n$ at a chosen rank r = 5. (b) the empirical sampling complexity when OptEval-2 outperforms RG-UCB.

Experiments II

Real-world games: OptEval approximate the games that are both low-rank and high-rank, i.e. approximating full-rank AlphaStar by r = 32.

Table: Results on selected real world games with noise free evaluations. The number of entries are reduced by 60%-80%.

< ⊒ >

< □ > < 凸

The End

イロト イヨト イヨト イヨト