Estimating α-Rank from A Few Entries with Low Rank Matrix Completion

Yali Du* ${ }^{* 1}$, Xue Yan*2, Xu Chen ${ }^{3}$, Jun Wang ${ }^{1}$, Haifeng Zhang ${ }^{2}$
${ }^{1}$ University College London, ${ }^{2}$ Institute of Automation, CAS, ${ }^{3}$ Renmin University of China

$$
\text { June 21, } 2021
$$

Introduction

Background

- Multi-agent evaluation aims at the assessment of an agent's strategy on the basis of interaction with others.
- Renowned evaluation algorithms: Elo rating system [Elo78], α-rank [Omi+19].
α-rank for two-player game with a single population:
- build Markov transitive matrix according to payoff M;

$$
C_{i, j}= \begin{cases}\eta \frac{1-\exp \left(-\alpha\left(M_{j i}-M_{i j}\right)\right)}{1-\exp \left(-\alpha p\left(M_{j i}-M_{i j}\right)\right)} & \text { if } M_{j i} \neq M_{i j} \\ \frac{\eta}{p} & \text { otherwise }\end{cases}
$$

- compute the invariant distribution π;
- return the ranking of strategies according to π.

Low-rank Property

Motivation:

- Repeated strategies may exist in the empirical games.
- Agents who have similar skills might perform similarly.
- Rowland et al. estimate all pairs, which is computationally heavy.

Evidence from real-world games from [Cza+20]:

Game	\# policies	rank	k
3-move parity game 2	160	14	9
Blotto	1001	50	16
hex(board_size=3)	766	764	232
Disc game	1000	2	2
Normal Bernoulli game	1000	1000	499
Elo game	1000	38	2
Random game of skill	1000	1000	515
Transitive game	1000	2	2
Triangular game	1000	1000	137
AlphaStar	888	888	238
tic_tac_toe	880	880	285
Kuhn-poker	64	64	24

(a) Histograms of 15% singular (b) Percentage of top singular values percentage values

We need to remove the necessity of exhaustively comparing all strategy pairs.

Our Algorithms

We are motivated to consider low-rank property of payoff matrices. The overall architecture of OptEval

We propose two algorithms with noise-free and noisy payoffs.

```
Algorithm 1 optEval-1: }\alpha\mathrm{ -rank with noise-free payoff.
Require: A chosen rank \hat{r},\mathrm{ sampling operator }\Omega\in[n]\times[n]}\mathrm{ .
Ensure:The invariant distribution of }n\mathrm{ players }\overline{\boldsymbol{\pi}}\mathrm{ .
    1: Randomly sample m
        [n]\times[n] by the sampling operator \Omega.
    2: Get pairwise comparison results M
    3: Calculate the reconstructing payoff matrix }\overline{M}\mathrm{ accord-
        ing to OptSpace with rank \hat{r}}\mathrm{ in Algorithm 4.
    4: Construct the Markov chain }\overline{C}\mathrm{ through Eq. (1)
    5: Solve the invariant distribution \overline{\boldsymbol{\pi}}\mathrm{ of }\overline{\boldsymbol{C}}
    6: Return \overline{\boldsymbol{\pi}}
```

```
Algorithm 2 Learning }\alpha\mathrm{ -rank with noisy payoff.
Require: n players' strategies, a chosen rank }\hat{r}\mathrm{ , a sampling
        operator \Omega\in[n]\times[n]
Ensure: The invariant distribution of }n\mathrm{ players }\overline{\boldsymbol{\pi}}\mathrm{ .
    1: Randomly sample m}\mathrm{ pairs from the entire sample space
        [n]\times[n] by }\Omega\mathrm{ .
2: Call Algorithm 3 on \Omega to get noisy pairwise comparison
        results \mp@subsup{\hat{M}}{}{\Omega}
3: Perform OptSpace on }\mp@subsup{\hat{M}}{}{\Omega}\mathrm{ with rank }\hat{r}\mathrm{ and calculate
        the reconstructing payoff matrix \hat{\hat{M}}
4: Construct the Markov chain }\overline{\hat{C}}\mathrm{ through Eq. (1)
5: Solve the invariant distribution 产 of \hat{C}
6: Return \overline{\pi}
```


Theoretical Results (Informal)

Theorem (Noise-free evaluations)

Let $\Omega \subseteq[n] \times[n]$ be a randomly selected set of pairs to be evaluated, then there exists a constant C such that if Ω satisfies

$$
|\Omega| \geq C n r \kappa^{2} \max \left\{\mu_{0} \log n, \mu^{2} r \kappa^{4}\right\}
$$

then we can obtain the exact invariant distribution with high probability.

Theorem (Noisy evaluations)

Let Ω be a sample operator, for each pair $(i, j) \in \Omega$, let $\hat{M}_{i j}$ be an empirical payoff constructed by taking K i.i. d. interactions of player i and j. There exist constants C and C^{\prime} such that if the number of randomly selected pairs m satisfies $|\Omega| \geq C \kappa^{2} n \max \left(\mu_{0} r \log (n), \mu_{0}^{2} r^{2} \kappa^{4}, \mu_{1}^{2} r^{2} \kappa^{4}\right)$ and K satisfies $K \geq \frac{2592 M_{\text {max }}^{2} \log \left(2 m n^{3}\right) L\left(\alpha, M_{\max }\right)^{2}\left(\sum_{i=1}^{n-1}\binom{n}{i} i^{n}\right)^{2} C^{\prime 2} \kappa^{4} r n^{2}}{\epsilon^{2} g\left(\alpha, \eta, p, M_{\max }\right)^{2}}$, Then $\max _{i \in[n]}|\overline{\hat{\pi}}(i)-\pi(i)| \leq \epsilon$ is satisfied with probability at least $1-\frac{2}{n^{3}}$.

Experiments I

Empirical sample complexity: Results on twenty $n \times n$ Gaussian games with $n=10,20, \ldots, 200, r=5$. (a) the empirical sampling complexity of OptEval-1 when $\epsilon \leq 10^{-4} / n$ at a chosen rank $r=5$. (b) the empirical sampling complexity when OptEval-2 outperforms RG-UCB.

Experiments II

Real-world games: OptEval approximate the games that are both low-rank and high-rank, i.e. approximating full-rank AlphaStar by $r=32$.

Table: Results on selected real world games with noise free evaluations. The number of entries are reduced by $60 \%-80 \%$.

The End

