GraphNorm:

A Principled Approach to Accelerating Graph Neural Network Training

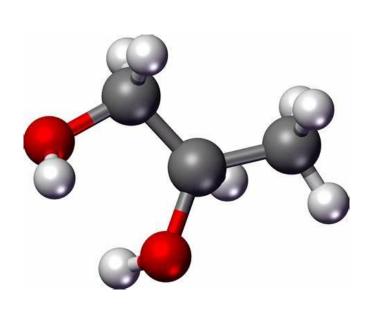
Tianle Cai*, Shengjie Luo*, Keyulu Xu, Di He, Tie-Yan Liu, Liwei Wang

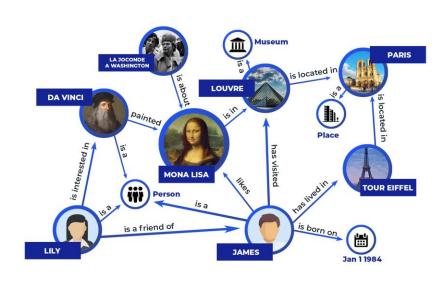
https://github.com/lsj2408/GraphNorm

Massachusetts Technology

Microsoft

Learning with graph – a general form of data





Drug Discovery

(phys.org)

Social Networks

(acwits)

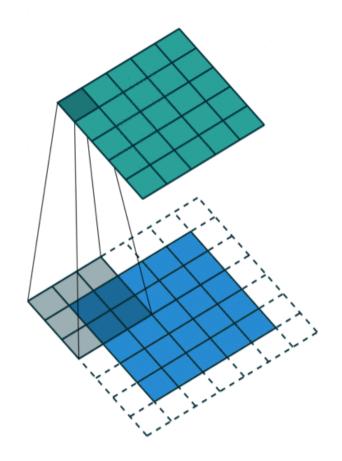
Knowledge Graph

(yashuseth.blog)

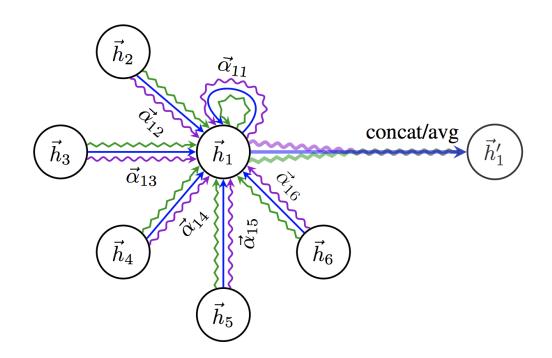
Graph Neural Networks

Neighborhood Aggregation a.k.a. Message Passing or

Graph Convolution



Aggregate neighbor features with permutation invariance functions



Graph Neural Networks

Neighborhood Aggregation

$$h_i^{(k)} = AGGREGATE^{(k)}\left(h_i^{(k-1)}, \left\{h_j^{(k-1)}: v_j \in \mathcal{N}(v_i)\right\}\right)$$

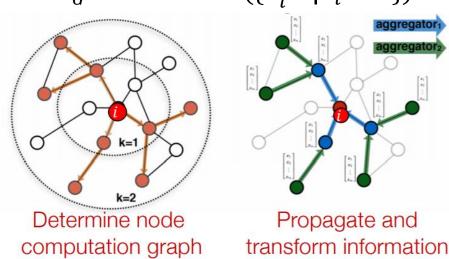
Example -- GIN

Feature of node v_j in layer k-1.

$$h_i^{(k)} = MLP^{(k)} \left(\left(1 + \epsilon^{(k)} \right) \cdot h_i^{(k-1)} + \sum_{j \in \mathcal{N}(v_i)} h_j^{(k-1)} \right)$$

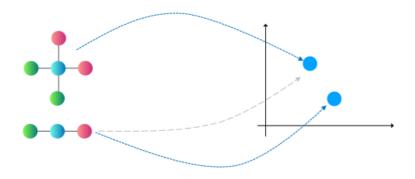
$$\epsilon^{(k)} \text{ is a learnable parameter}$$

Readout Function



Investigations on Graph Neural Network

Expressive Power



Which graphs can a GNN distinguish?

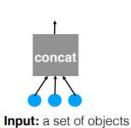
Reasoning

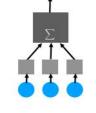
Reasoning tasks as dynamic programming (DP):

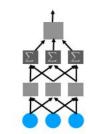
visual question answering

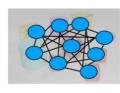
Intuitive physics

Generalization







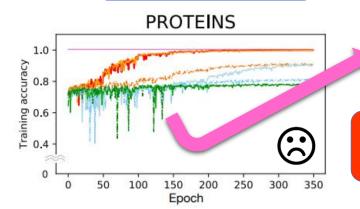


feedforward network

Deep Set

GNN

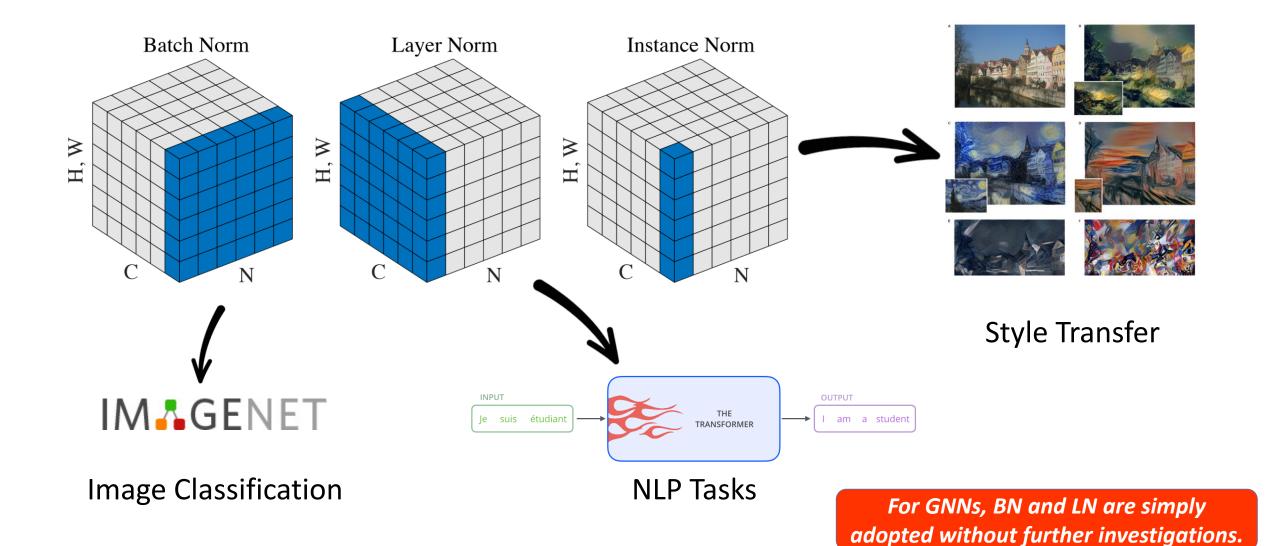
Optimization?



- Training instability
- Slow convergence

Even with Normalization methods.

Normalization for Neural Networks



What normalization methods are effective for Graph Neural Networks?

This paper

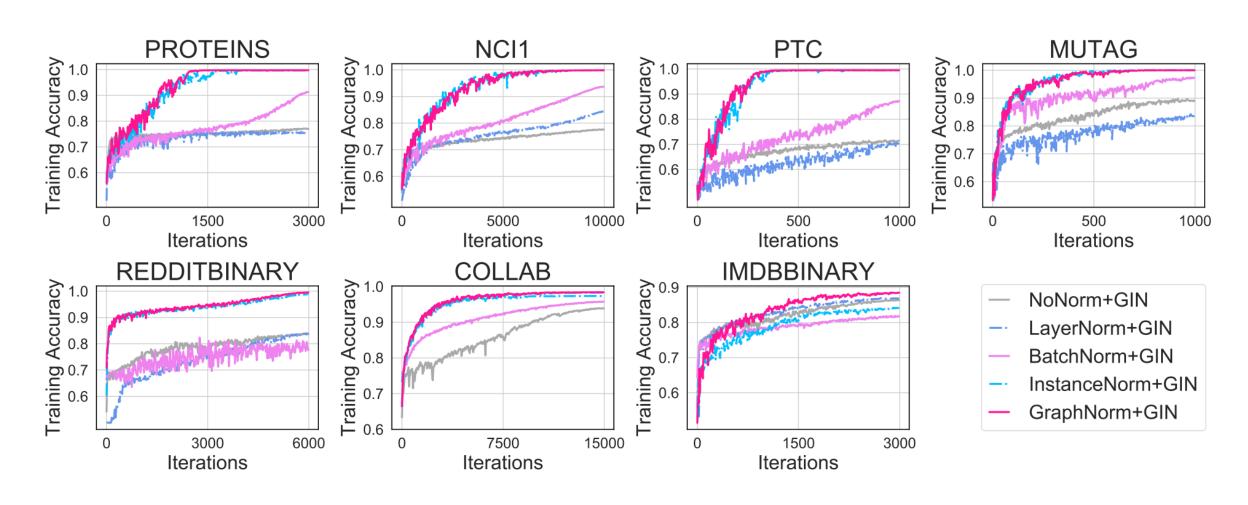
Adapting and evaluating existing normalization methods to GNNs.

Explaining the effectiveness of InstanceNorm over BatchNorm.

Identifying an expressiveness degradation of InstanceNorm.

Proposing GraphNorm which addresses the issue and converges faster.

Evaluation of existing normalization methods



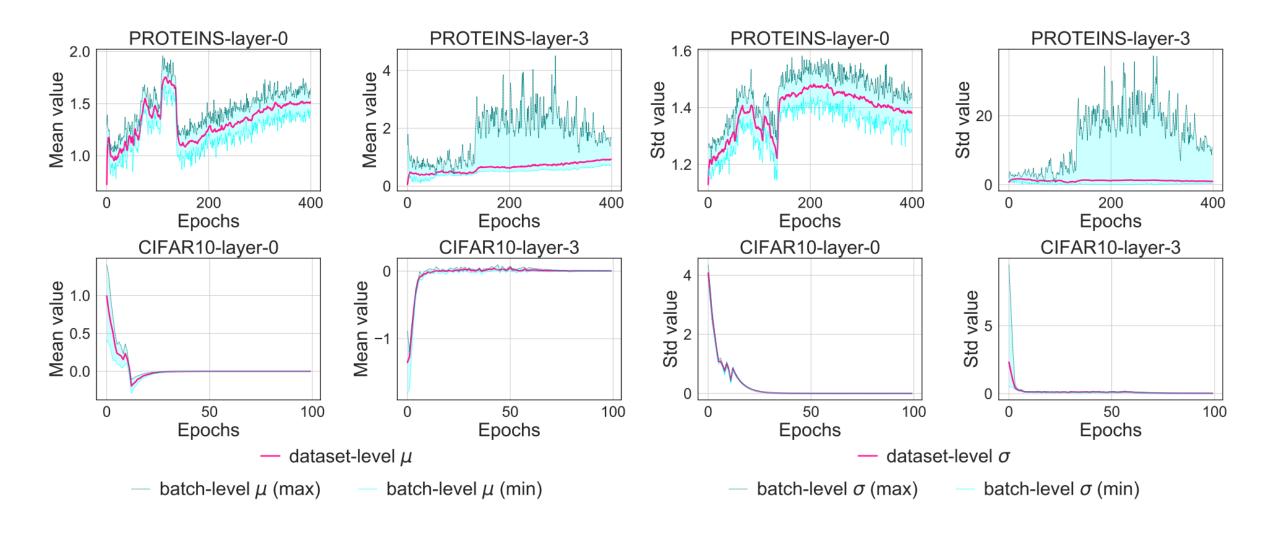
Preconditioning effect of InstanceNorm

Theorem 3.1 (Shift Serves as a Preconditioner of Q). Let Q, N be defined as in Eq. (6), $0 \le \lambda_1 \le \cdots \le \lambda_n$ be the singular values of Q. We have $\mu_n = 0$ is one of the singular values of QN, and let other singular values of QN be $0 \le \mu_1 \le \mu_2 \le \cdots \le \mu_{n-1}$. Then we have

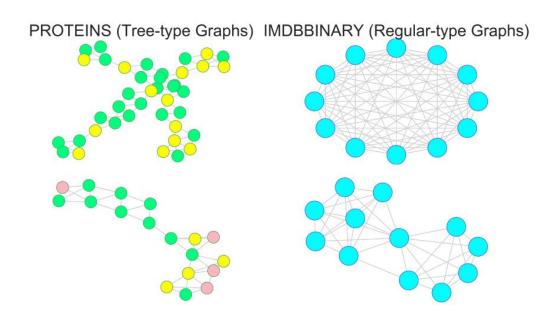
$$\lambda_1 \le \mu_1 \le \lambda_2 \le \dots \le \lambda_{n-1} \le \mu_{n-1} \le \lambda_n, \tag{7}$$

where $\lambda_i = \mu_i$ or $\lambda_i = \mu_{i-1}$ only if there exists one of the right singular vectors α_i of Q associated with λ_i satisfying $\mathbf{1}^{\top}\alpha_i = 0$.

Heavy batch noise in graphs



Expressiveness degradation of InstanceNorm



Proposition 4.1. For a r-regular graph with one-hot encodings as its features described above, we have for GIN, $\operatorname{Norm}\left(W^{(1)}H^{(0)}Q_{\operatorname{GIN}}\right)=S\left(W^{(1)}H^{(0)}Q_{\operatorname{GIN}}\right)N=0$, i.e., the output of normalization layer is a zero matrix without any information of the graph structure.

Proposition 4.2. For a complete graph (r = n - 1), we have for GIN, $Q_{GIN}N = \xi^{(k)}N$, i.e., graph structural information in Q will be removed after multiplying N.

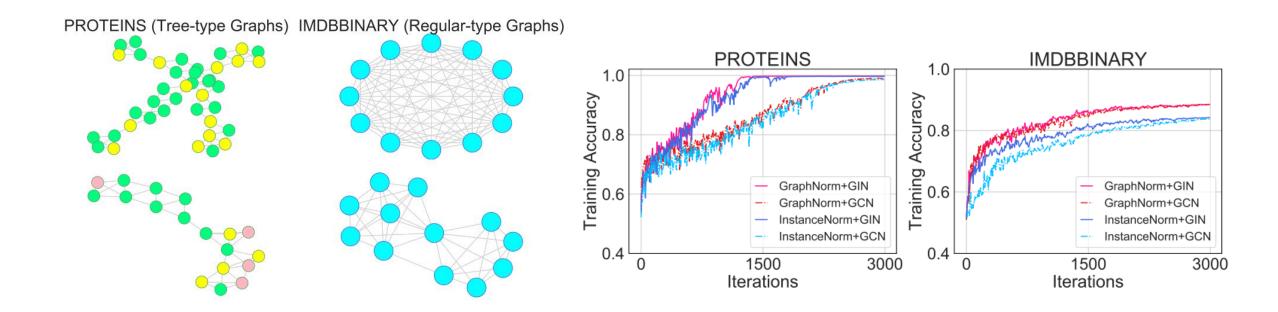
Proposed method: GraphNorm

Key: learnable parameter to control how much the information we need to keep in the mean

GraphNorm
$$(\hat{h}_{i,j}) = \gamma_j \cdot \frac{\hat{h}_{i,j} - \alpha_j \cdot \mu_j}{\hat{\sigma}_j} + \beta_j,$$

- Inheriting the merit of InstanceNorm
- Solving the expressiveness degradation problem

GraphNorm addresses the issue of InstanceNorm



GraphNorm achieves good performance

Datasets	MUTAG	PTC	PROTEINS	NCI1	IMDB-B	RDT-B	COLLAB
# graphs	188	344	1113	4110	1000	2000	5000
# classes	2	2	2	2	2	2	2
Avg # nodes	17.9	25.5	39.1	29.8	19.8	429.6	74.5
WL SUBTREE (SHERVASHIDZE ET AL., 2011)	90.4 ± 5.7	59.9 ± 4.3	75.0 ± 3.1	$\textbf{86.0} \pm \textbf{1.8}$	73.8 ± 3.9	81.0 ± 3.1	78.9 ± 1.9
DCNN (ATWOOD & TOWSLEY, 2016)	67.0	56.6	61.3	62.6	49.1	-	52.1
DGCNN (ZHANG ET AL., 2018)	85.8	58.6	75.5	74.4	70.0	-	73.7
AWL (IVANOV & BURNAEV, 2018)	87.9 ± 9.8	-	-	-	74.5 ± 5.9	87.9 ± 2.5	73.9 ± 1.9
GIN+LayerNorm	82.4 ± 6.4	62.8 ± 9.3	76.2 ± 3.0	$78.3 \pm 1,7$	$74.5 \pm 4,4$	82.8 ± 7.7	80.1 ± 0.8
GIN+BATCHNORM ((XU ET AL., 2019))	89.4 ± 5.6	64.6 ± 7.0	76.2 ± 2.8	82.7 ± 1.7	75.1 ± 5.1	92.4 ± 2.5	$\textbf{80.2} \pm \textbf{1.9}$
GIN+InstanceNorm	90.5 ± 7.8	64.7 ± 5.9	76.5 ± 3.9	81.2 ± 1.8	74.8 ± 5.0	93.2 ± 1.7	80.0 ± 2.1
GIN+GraphNorm	$\textbf{91.6} \pm \textbf{6.5}$	$\textbf{64.9} \pm \textbf{7.5}$	$\textbf{77.4} \pm \textbf{4.9}$	81.4 ± 2.4	$\textbf{76.0} \pm \textbf{3.7}$	$\textbf{93.5} \pm \textbf{2.1}$	$\textbf{80.2} \pm \textbf{1.0}$

Table 2. Test performance on OGB.					
Datasets	OGBG-MOLHIV				
# graphs	41,127				
# classes	2				
Avg # nodes	25.5				
GCN (Hu et al., 2020)	76.06 ± 0.97				
GIN (Hu et al., 2020)	75.58 ± 1.40				
GCN+LayerNorm	75.04 ± 0.48				
GCN+BatchNorm	76.22 ± 0.95				
GCN+InstanceNorm	78.18 ± 0.42				
GCN+GraphNorm	$\textbf{78.30} \pm \textbf{0.69}$				
GIN+LayerNorm	74.79 ± 0.92				
GIN+BatchNorm	76.61 ± 0.97				
GIN+InstanceNorm	77.54 ± 1.27				
GIN+GraphNorm	77.73 ± 1.29				

Thank you:)

