
A Differentiable Point Process
with its Application to
Spiking Neural Networks

Hiroshi Kajino
IBM Research - Tokyo

Opportunities and challenges in spiking neural networks (SNNs)

Spiking neural networks (SNNs)

• Neurons communicate with spikes

• Neuron has a dynamical state (= membrane
potential) evolving in continuous time

Opportunities
SNNs are often reported to be more energy-efficient

• Spike-based communication

• Efficient information encoding into spikes

Challenges

• Difficult to train due to discrete nature of spikes

• Time-consuming to simulate SNNs

• Computation time

• Step-size parameter to discretize time axis

2

Neuron

Membrane potential

Spike & reset

Our approach: Probabilistic model of SNNs

Point process (PP) = a probalistic model of event
seq.

𝒯!"! = 𝑡#, … , 𝑡$ ⊂ [0, 𝑇]

PP is specified by a conditional intensity function:

𝜆 𝑡 𝒯!"" d𝑡
= Pr 𝑡%&# ∈ [𝑡, 𝑡 + d𝑡] ∣ 𝒯!"" and 𝑡%&# ∉ (𝑡% , 𝑡)

=
𝑓 𝑡 𝒯!"" d𝑡
1 − 𝐹 𝑡 𝒯!""

A probabilistic spiking neuron is defined as a PP:

• Conditional intensity function ∝ membrane
potential

𝜆' 𝑡 𝒯!"" = 𝜎 𝑢' 𝑡 𝒯!""

• Membrane potential = spike response model

𝑢' 𝑡 𝒯!"" = 𝑢' + >
"# ,'# ∈𝒯$%"

𝑓'# 𝑡 − 𝑡+

3
No event in (𝑡% , 𝑡)

Event in [𝑡, 𝑡 + d𝑡]

𝑑+ 𝑑

𝑡+ 𝑡

𝑡+

𝑓'#

😄 Probabilistic SNNs can be simulated exactly

Thinning algorithm [Lewis+,79] [Ogata,81]

Input: 𝜆 𝑡 𝒯!"" , upperbound 𝜆̅ ≥ 𝜆 𝑡 𝒯!""
Output: 𝒯 Realization of 𝒫𝒫(𝜆)

𝑘 ← 1, 𝒮 ← ∅, 𝒯 ← ∅
Repeat:
• Sample 𝑠, ∈ ℝ ∼ 𝒫𝒫(𝜆̅ ∣ 𝒮)
• Sample 𝑑, ∈ {0,1} ∼ Bernoulli - 𝑠, 𝒯

.-
• If 𝑑, = 1 then 𝒯 ← 𝒯 ∪ 𝑠,
• 𝒮 ← 𝒮 ∪ 𝑠,
Return 𝒯

4

Base Poisson point process

Conditional intensity function

Output of the thinning algo.

= Rejected

𝒮

𝒯

𝜆

😢 SNNs w/ hidden neurons are difficult to train

Optimize -ELBO by SGD [Rezende+,11]
[Rezende+, 14]

ℓ 𝜃, 𝜙 = 𝔼/ 𝒯&;1 − log 𝑝 𝒯2 , 𝒯3; 𝜃 + log 𝑞 𝒯3; 𝜙

• 𝑝 𝒯2 , 𝒯3; 𝜃 : SNN to be trained

• 𝑞 𝒯3; 𝜙 : Variational distribution (point process)

Existing approach by Rezende+ (2014)

• Gradient w.r.t. 𝜃 is easy to estimate

• Gradient w.r.t. 𝜙 is estimated by

𝜕ℓ
𝜕𝜙

=
𝜕
𝜕𝜙

𝔼/ 𝒯&;1
\ℓ 𝜃, 𝜙; 𝒯2 , 𝒯3

= 𝔼/ 𝒯&;1
\ℓ ⋅ ∇1 log 𝑞 𝒯3; 𝜙 + ∇1\ℓ

whose variance is known to be high L

A remedy: Reparameterization trick
To make a realization of 𝑞(𝒯3; 𝜙) differentiable

5

Observable Hidden

≡ \ℓ 𝜃, 𝜙; 𝒯2 , 𝒯3

😄 Our differentiable point process enables the reparameterization
trick

Sampling algorithm of a differentiable PP

Input: 𝜆 𝑡 𝒯!"" , upperbound 𝜆̅ ≥ 𝜆 𝑡 𝒯!""
Output: 𝒯 Realization of 𝜕𝒫𝒫(𝜆)

𝑘 ← 1, 𝒮 ← ∅, 𝒯 ← ∅
Repeat:
• Sample 𝑠, ∈ ℝ ∼ 𝒫𝒫(𝜆̅ ∣ 𝒮)
• Sample 𝑑, ∈ [0,1] ∼ Gumbel_softmax4

- 𝑠, 𝒯
.-

• 𝒯 ← 𝒯 ∪ (𝑠, , 𝑑,)
• 𝒮 ← 𝒮 ∪ 𝑠,
Return 𝒯

6

Base Poisson point process

Conditional intensity function

Output of our sampling algo.

𝒮

𝒯

𝜆

Empirical studies

1. Standard deviations of gradient estimators
66.3 (Ours) vs. 2,490 (Existing)

2. Predictive performance

3. Computation time

7

25 50 75 100 125 150 175 200

of training examples

°450

°400

°350

°300

°250

°200

°150

°100

E
LB

O

SNN

@SNN

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Amplitude a

0

100

200

300

400

500

P
er

-e
po

ch
co

m
pu

ta
ti
on

ti
m

e
[s

ec
] SNN

@SNN

be
tte

r

be
tte

r

Existin
g
Ours

Existin
g
Ours

∝ # of hidden spikes

Summary

Our contributions

• A differentiable point process

• A better learning algorithm of probabilistic SNNs

Findings (vs. the existing work)

• Our gradient estimator has smaller variance

• Smaller var. leads to the better predictive
performance

• 2.8x computational overhead

Code is available under MIT license!

https://github.com/ibm-research-tokyo/diffsnn

8

