CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

Hanshu Yan ¹ Jingfeng Zhang ³ Gang Niu ³ Jiashi Feng ¹ Vincent Y. F. Tan ^{1,2} Masashi Sugiyama ³

¹ECE, NUS ²Math, NUS

³RIKEN-AIP ⁴GSFS, UTokyo

ICML 2021

1 / 11

Motivation

Different from adversarial training (AT)-based methods, this paper proposed a novel mechanism to modify CNNs, so that the robustness of CNNs can be further enhanced under AT.

- CNNs make predictions by aggregating information from various channels / feature maps
- Abnormal activated channels may result in significant prediction error

2 / 11

Motivation

Different from adversarial training (AT)-based methods, this paper proposed a novel mechanism to modify CNNs, so that the robustness of CNNs can be further enhanced under AT.

- It is necessary to investigate the relation between robustness and channels' activations, i.e., what types of channels are over/under activated by adversarial data.
- We can enhance the robustness of CNNs by controlling the activations of channels.

2 / 11

Relevances of channels to predictions

- Activation level of i^{th} : $\sum_{j}^{n_{\text{F}}} (z_{[i][j]}^l) / n_{\text{F}}$
- add a channel-wise perturbation $\delta \in \mathbb{R}^{n_{\mathsf{C}}}$ to z^l , $z^l_{\delta} = z^l + \delta \cdot \mathbf{1}^{\top}$, where $\mathbf{1} \in \mathbb{R}^{n_{\mathsf{F}}^l}$
- the relevance of i^{th} channel to class y is defined as $g_{[i]}^l$

Relevances of channels to predictions

- Positively-relevant (PR) channels: $g_{[i]}^l > 0$
- Negatively-relevant (NR) channels: $g_{[i]}^l \leq 0$

3 / 11

Abnormal Channels in non-robust and robustified CNNs

Comparing channels' activations of non-robust and robustified CNNs

- ResNet-18, CIFAR10
- non-robust, normally trained
- robustified, adversarially trained
- feature maps of the penultimate layer (output of the last res-block before the global avg pooling and the final linear layer)
- say the true label is class k, the weights in the linear layer corresponding to class k can represent the relevances of channels

4 / 11

Non-robust vs. Robustified CNNs

Yan et al.

CIFS

ICML 2021 5 / 11

A hypothesis denoted as ${\mathcal H}$

Suppressing NR channels and promoting channels' activations based on their relevances to prediction results benefit the robustness of CNNs.

To verify hypothesis \mathcal{H} , we need a technique for

- Relevance assessment
- Generating importance scores to control channels' activations

6 / 11

CIFS: Channel-wise Importance-based Feature Selection

Relevance assessment

- auxiliary classifier A^l as a surrogate of $f^{[l+1:L]}$
- $p^l = A^l(z^l) \in \mathbb{R}^K$, trained under supervision of ground-truth labels.
- relevance vector g^l

$$g^l = \nabla_{\delta} \sum_{i \in y^{l,k}} p^l(\delta)_{[i]} \bigg|_{\delta = \mathbf{0}} = \nabla_{z^l_{\delta}} \sum_{i \in y^{l,k}} A^l(z^l_{\delta})_{[i]} \bigg|_{z^l_{\delta} = z^l} \cdot \mathbf{1}$$

• $y^{l,k}$ denotes indices of the k largest logits of prediction p^l

CIFS: Channel-wise Importance-based Feature Selection

Importance Map Generating Function (IMGF)

- monotonic non-negative mapping (promoting PR channels)
- mapping negative values to targets close to zero (suppressing NR channels)

Options:

• softplus:
$$m_{[i]}^l = \frac{1}{\alpha} \cdot \log(1 + \exp(\alpha \cdot g_{[i]}^l)), \quad \alpha > 0.$$

• softmax: $m_{[i]}^l = \frac{\exp(g_{[i]}^l/T)}{\sum_j \exp(g_{[j]}^l/T)}, \quad T > 0.$

ICML 2021

7 / 11

Adversarial Training of CIFS

In practice, we may apply the CIFS mechanism into several layers of a CNN.

- *I*, the set of indices of these layers
- θ_A^I , the parameters of all the probes in the CIFS-modified layers
- |I| raw predictions and one final prediction $p=\bar{f}^{[L]}(x)$

$$\ell_{\beta}(x,y) = \frac{1}{1+\beta} \cdot \ell_{\rm ce}(p,y) + \frac{\beta}{(1+\beta)|I|} \cdot \sum_{l \in I} \ell_{\rm ce}(p^l,y),\tag{1}$$

ICML 2021

8 / 11

• $\beta > 0$ balances the accuracy of raw predictions by CIFS and the final prediction. In practice, we set β to be |I|

$$\min_{\theta^{[L]}, \theta^{I}_{A}} \mathbb{E}_{P_{XY}} \left[\max_{X' \in \mathcal{B}(X, \epsilon, l_{\infty})} \ell_{\beta}(X', Y) \right],$$
(2)
where $\mathcal{B}(x, \epsilon, l_{\infty}) = \{x' \mid \|x' - x\|_{l_{\infty}} \le \epsilon\}.$

Verification of Hypothesis \mathcal{H}

Figure 2: The robust accuracies against PGD-20 (on the whole dataset) are 46.64% for non-CIFS, 49.87% for the CIFS-sigmoid, 50.38% for the CIFS-softplus, and 51.23% for the CIFS-softmax respectively

More Experimental Results

Table 1: Robustness comparison of defense methods on CIFAR10. We report the accuracies (%) for adversarial and natural data. For each model, the results of the strongest attack are marked with an underline.

ResNet-18	Natural	FGSM	PGD-20	C&W	PGD-100
Vanilla	84.56	55.11	46.62	45.95	44.72
CAS	86.73	55.99	45.29	44.18	43.22
CIFS	83.86	58.86	51.23	50.16	48.70
WRN-28-10	Natural	FGSM	PGD-20	C&W	PGD-100
WRN-28-10 Vanilla	Natural 87.29	FGSM 58.50	PGD-20 49.17	C&W 48.68	PGD-100 <u>47.08</u>
WRN-28-10 Vanilla CAS	Natural 87.29 88.05	FGSM 58.50 57.94	PGD-20 49.17 49.03	C&W 48.68 47.97	PGD-100 47.08 47.25

10 / 11

< 口 > < 同 >

Summary

- we observe that adversarial data tends to over-activate NR channels and under-activate the PR channels.
- we propose CIFS to modify the feature maps of conv layers by suppressing NR channels but promoting PR channels
- we conduct extensive experiments to verify that CIFS further enhances the robustness of CNNs under AT

Thanks !

11 / 11