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Symmetric Neural Networks

Fix N and let x = {x1, . . . , xN}
The DeepSets1 architecture:

fN(x) = ρ

(
1

N

N∑
n=1

Φ(xn)

)

Universal approximator for continuous symmetric functions for fixed N

Main Question

How to model fN across varying values of N?

1Manzil Zaheer et al. “Deep sets”. In: Advances in neural information processing
systems. 2017, pp. 3391–3401.
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DeepSets for probability measures

Given {x1, . . . , xN}, form the discrete measure µ(N) = 1
N

∑N
n=1 δxn

ρ

(
1

N

N∑
n=1

Φ(xn)

)
= ρ

(
〈Φ, µ(N)〉

)
=

∫
A
σ(〈φ, µ(N)〉)χ(dφ)

DeepSets ⇐⇒ NN that takes µ(N) as input

Here χ is a measure over some function space A
Can we generalize beyond discrete measures µ(N) to arbitrary µ?
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Convex Neural Networks vs. Measure Neural Networks

Convex Neural Network2

φ(x) =

∫
Sd
σ(〈w , x̃〉)ν(dw)

Input: x ∈ I ⊂ Rn

Weights: w ∈ Rn+1

Neurons: ν ∈M(Rn+1)

Universal Approximation3

Measure Neural Network

f (µ) =

∫
A
σ(〈φ, µ〉)χ(dφ)

Input: µ ∈ P(I)
Weights: φ ∈ A

Neurons: χ ∈M(A)

Universal Approximation4 5

2Francis Bach. “Breaking the curse of dimensionality with convex neural networks”. In: The Journal of Machine Learning
Research 18.1 (2017), pp. 629–681.

3George Cybenko. “Approximation by superpositions of a sigmoidal function”. In: Mathematics of control, signals and
systems 2.4 (1989), pp. 303–314.

4Gwendoline De Bie, Gabriel Peyré, and Marco Cuturi. “Stochastic deep networks”. In: International Conference on Machine
Learning. 2019, pp. 1556–1565.

5Tomas Pevny and Vojtech Kovarik. “Approximation capability of neural networks on spaces of probability measures and
tree-structured domains”. In: arXiv preprint arXiv:1906.00764 (2019).
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Main Questions

Question

How do we use measure neural networks to learn symmetric families fN
across different N?

Proposition (informal)

There exists a continuous extension f̄ to probability measures iff the
incomplete extension to discrete measures f̂ is uniformly continuous with
regard to the W1 metric on its domain.

Question

What functional spaces do measure neural networks yield? How does
learning work in these spaces?
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Functional Spaces of Measure Networks

f (µ) =

∫
A
σ̃(〈φ, µ〉)χ(dφ)

Functional spaces determined by restrictions on possible χ:

Choose if χ is a density w.r.t. some base measure

Choose the support of χ

χ Supp(χ) Associated Norm

S1 Arbitrary bounded Barron norm TV (χ)
S2 Arbitrary bounded RKHS norm TV (χ)

S3 Density bounded RKHS norm
‖p‖L2(τ) where

p(φ)τ(dφ) = χ(dφ)
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Approximation of Si

Theorem (informal)

For appropriate choices of the kernel base measures κ and τ , there exist f1
with ‖f1‖S1 ≤ 1 and f2 with ‖f2‖S2 ≤ 1 such that:

inf
‖f ‖S3

≤δ
‖f − f2‖∞ & d−2δ−5/d ,

inf
‖f ‖S2

≤δ
‖f − f1‖∞ & |d−11 − d−d/3δ| .

Punchline: S3 ( S2 ( S1

Separation is cursed by dimension, but polynomially goes to 0

Careful analysis of spherical harmonics and parity arguments to map
from signed measure to probability measure inputs, requires using the
square ReLU as the test function activation
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Synthetic Experiments
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Synthetic Experiments
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