

Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels

Zhaowei Zhu, Yiwen Song, and Yang Liu

{zwzhu, yangliu}@ucsc.edu

Code & Dataset

REsponsible & Accountable Learning (REAL)

@ University of California, Santa Cruz

https://github.com/UCSC-REAL

Figure: Illustration of high-order consensuses.

Noise Transition Matrix **T**

- Each element of **T**: $T_{ij} := \mathbb{P}(\widetilde{Y} = j | Y = i)$ Clean label $i \rightarrow \text{Noisy label } j$
- Example: Our self-collected CIFAR-10 human annotations:

$$T_{11} = \mathbb{P}(\widetilde{Y} = 1|Y = 1) = 0.6, \ T_{12} = \mathbb{P}(\widetilde{Y} = 2|Y = 1) = 0.2$$

Why we need T?

Knowing T helps build noise-resistant classifier

BUT...

• Current methods [1-3] relies on models:

Model-free?

^[1] G. Patrini et al. "Making deep neural networks robust to label noise: A loss correction approach." CVPR'17.

^[2] X. Xia et al. "Are anchor points really indispensable in label-noise learning?" NeurIPS'19.

^[3] C. Northcutt et al. "Condent learning: Estimating uncertainty in dataset labels." JAIR'21.

Motivation

Check label consensuses of similar features

Intuition:

→ Pattern (DOG, CAT, CAT) encodes T

Questions:

- ⇒ Find similar features
- # similar features
- → Decode T

Find similar features

- k-NN Label Clusterability:
 - Each representation and its k-NN belong to the same true class

Figure: Illustration of k-NN label clusterability.

Properties:

- → Larger k is harder
 - 2-NN is sufficient
- → Local small clusters
 - different breeds of "CATs" may be far away
- ➤ NOT specifying the true class
 - "CAT" or "DOG"? Unknown!

similar features

- 2-NN label clusterability is feasible
 - Feature Extractors: Output of convolutional layers (when DNN overfits a dataset)
 - |E|: Sample size

Table: Ratio of feasible 2-NN tuples. (%)

Factions Cotton at an	CIFAR-10		CIFAR-100	
Feature Extractor	E = 5k	E = 50k	E = 5k	E = 50k
Clean	99.99	99.99	99.88	99.90
Inst. $\eta = 0.2$	87.88	89.06	82.82	84.33
Inst. $\eta = 0.4$	78.15	79.85	64.88	68.31

• 2-NN label clusterability is sufficient to *uniquely* get the true **T** (Theorem 1)

Decode T

Check High-Order Consensuses (HOC)

Figure: Illustration of high-order consensuses.

For each consensus pattern, we can:

- **→** Count the frequency **→** *estimates*
- → Calculate the probability → functions

Then:

⇒ Solve equations:

```
(numerical) (analytical)
estimates = functions
```

- → Get:
 - Noise transition *T*
 - Clean prior p

Calculate the probability (Binary example)

1st-order (2 patterns)

Pattern "CAT"

Calculate the probability (Binary example)

2nd-order (4 patterns)

Calculate the probability (Binary example)

• 3rd-order (8 patterns)

High-Order Consensuses (HOC)

$$T_{ij} := \mathbb{P}(\widetilde{Y} = j | Y = i)$$

$$p_i = \mathbb{P}(Y = i)$$

Consensus Equations

- ullet 1st-order (K equations): $oldsymbol{c}^{[1]} := oldsymbol{T}^{ op} oldsymbol{p}$
- 2nd-order (K^2 equations): $\boldsymbol{c}_r^{[2]} := (\boldsymbol{T} \circ \boldsymbol{T}_r)^{\top} \boldsymbol{p}, \ r \in [K]$
- 3rd-order (K^3 equations): $\boldsymbol{c}_{r,s}^{[3]} := (\boldsymbol{T} \circ \boldsymbol{T}_r \circ \boldsymbol{T}_s)^{\top} \boldsymbol{p}, \ r,s \in [K]$

(Numbers = Functions)

Theorem 1: With 2-NN label clusterability, nonsingular and informative T, perfect knowledge of counts, the consensus equations return the true T <u>uniquely.</u>

Experiment

HOC can estimate T accurately

Comparison of estimation errors of T

Experiment

Loss Correction + HOC performs well

♦ Our self-collected CIFAR-10 human annotations:

- From Amazon Mechanical Turk (MTurk) in February 2020
- Collect each image with a cost of ¢10 per image

Table: Test accuracy (%) with human noise

5 ()					
Method	Clothing1M	Human CIFAR-10			
Forward [1]	70.83	86.82			
T-Revision [2]	71.67	85.92			
$CORES^2$	73.24	89.98			
HOC	73.39	90.62			

Challenging *instance-dependent* label noise:

Estimate **T** for each *local group*

Our method is:

- 1. flexible to extension
- 2. high sample complexity

Paper ID: 1148

Thank you!

Code & Dataset

Take a look at **HOC estimato** and **selfcollected** FAR-10 human annotations:

REsponsible & Accountable Learning (REAL) La @ University of California, Santa Cruz

https://github.com/UCSC-REAL