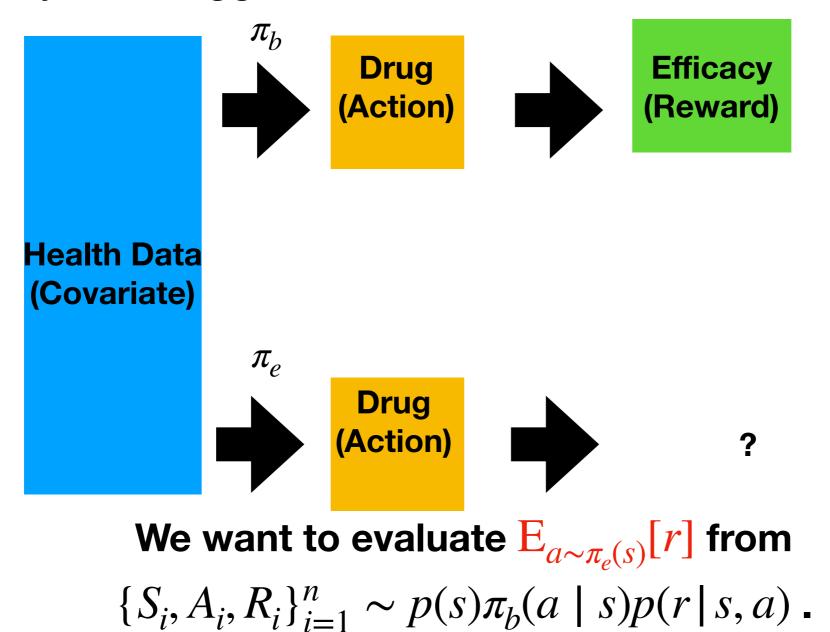
Optimal Off-Policy Evaluation from Multiple Logging Policies

Nathan Kallus/ Yuta Saito / Masatoshi Uehara

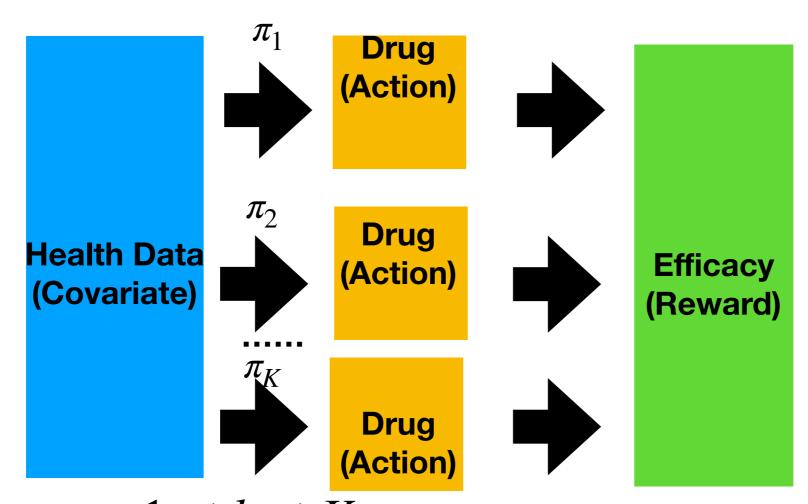
Off-policy Evaluation

 The goal is estimating a policy value of the evaluation policy from logged data.



Motivation

 Our goal is estimating the policy value from multiple data sets.



• For each $1 \le k \le K$, we have K datasets: $\{(S_i, A_i, R_i)\}_{i=1}^{n_k} \sim p_S(s)\pi_k(a \mid s)p_{R\mid S,A}(r \mid s,a).$

We want to evaluate $E_{a \sim \pi_{e}(s)}[r]$

Existing Estimators

- Agarwal et. 2017 proposed two estimators.
- IS estimators:

$$\hat{J}_{\mathsf{IS}} = \hat{E}_{a \sim \pi^*(s)} \left[\frac{\pi_e(a \mid s)r}{\pi^*(a \mid s)} \right], \pi^*(a \mid s) = \sum_{k=1}^{K} \frac{n_k}{n} \pi_k(a \mid s)$$

IS estimators 2:

$$\hat{J}_{\mathsf{IS-PW}} = \sum_{k=1}^{K} \lambda_k \hat{\mathbf{E}}_{a \sim \pi_k(s)} \left[\frac{\pi_e(a \mid s)r}{\pi_k(a \mid s)} \right] \quad \text{s.t.} \quad \sum_k \lambda_k = 1$$

Which is better?

Summary

- Propose a new class including estimators in Agarwal et. 2017. Then, calculate the lower bound of MSEs among the class.
- Show how to construct an estimator achieving this bound asymptotically under mild assumptions. This estimator has a doubly-robust property.

New Class

• We use weights $h_k(s, a)$ depending on the strata so that it satisfies $J = E[\hat{J}]$:

$$\hat{J} = \sum_{k=1}^{K} \hat{E}_{a \sim \pi^*} [h_k(s, a) \pi_e(a \mid s) \{ r - g(s, a) \} + g(s, \pi_e)].$$

Optimal among the above class when

$$h_k = 1/\pi^*, g = q, q(s, a) = E[r | s, a].$$

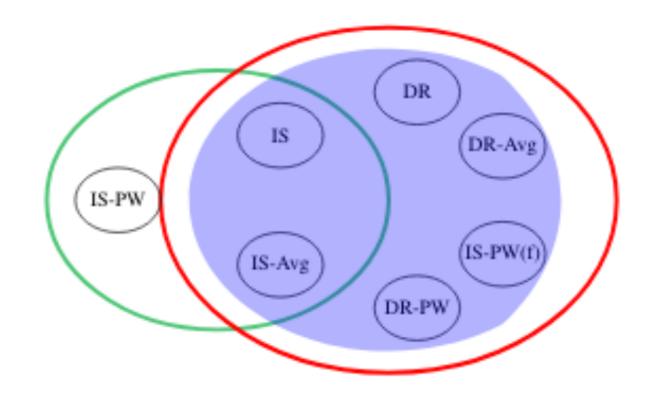
• I.E.
$$\hat{J}_{DR} = \hat{E}_{a \sim \pi^*(s)} \left[\frac{\pi_e(a \mid s)(r - \hat{q}(s, a))}{\hat{\pi}^*(a \mid s)} + \hat{q}(s, \pi_e) \right].$$

The above has a DR property.

Optimality

Reg: Regular estimators.

• Blue: A new class.

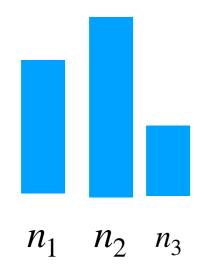


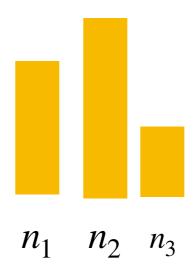
I.I.D vs Stratified

Is the case with multiple logging polices different from the case with a single logger?

Let n_1, \dots, n_K be each sample size in K data sets.

• n_1, n_2, \dots, n_K are fixed. * n_1, n_2, \dots, n_K are random.





Stratified (Our case)

I.I.D sampling forom a mixture policy

Other topics

- Extension to More Robust Doubly Robust estimators: Improved version of DR estimator.
- Extension to Reinforcement Learning Cases