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High-dimensional output spaces
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Compiles/Executes Forms a stable molecule Grammar/syntax Physical constraints,
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Output structure: only some outputs are valid



Supervised learning

* Example: Pseudocode-to-code (Kulal et al. 2019)

Input Output
setxto 3 — Direct predictor — intx=3;
setxto 5 X =9;




Supervised learning

* Example: Pseudocode-to-code (Kulal et al. 2019)

Input Output
setxto 3 — Direct predictor — intx=3;
setxto 5 X =9;

Predictor handles both input-output mapping and output structure



"Unlabeled” output data is abundant

#T g
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint

O is:public Pull requests Issues Marketplace Explore

Repositories | Showing 34,267,151 available repository results ® s

train_result = trainer.train(resume_from_checkpoint=checkpoint)

trainer.save_model() # Saves the tokenizer too
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metrics["train_samples"] = min(max_train_samples, len(train_dataset))
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trainer.save_metrics("train", metrics)
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"Unlabeled” output data is abundant

#T g
if training_args.do_train:

O is:public Pull requests Issues Marketplace Explore

checkpoint = None

if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
last_checkpoint is not None:

Repositories Showing 34,267,151 available repository results ® e

train_result = trainer.train(resume_from_checkpoint=checkpoint)

0 trainer.save_model() # Saves the tokenizer too for easy upload

Code

metrics = train_result.metrics

n

eliaskg/Hacky
Commits . - . S
Hacky for Mac provides browsing Hacker News in a clean and minimalistic way. max_train_samples = (
dat . t 1k if dat . 44 ¢ s N else len(train_dat: t)
Issues 174M ﬁ 370 ‘ Objective—c LGPL—2’] ]icense Updated on Feb 9, 2014 : ata_args.max_train_samples ata_args.max_train_samples is not None | en(train_datase

trainer.log_metrics("train", metrics)

metrics["train_samples"] = min(max_train_samples, len(train_dataset))
Discussions (Beta

Packages

trainer.save_metrics("train", metrics)

webyak/react-static-plate e ateN el

DiiilA fant atatin citac with Dannt 2. ACC MAaAiilaes

n

Unlabeled output data can be used for learning the output structure



Unlabeled outputs: not standar

Standard semi-supervised learning:

unlabeled inputs for improving
classifier

d SSL

Oliver et al. 2018
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Unlabeled outputs: not standard SSL

- - Supervised
—— II-model

Standard semi-supervised learning:
unlabeled inputs for improving
classifier

—— Entropy Minimization
—— Pseudo-Label
VAT
- Unlabeled
@ Class1
O Class2

Oliver et al. 2018

Leveraging unlabeled outputs
requires a different way of thinking



Pre-train + Fine-tune paradigm

* Qutput structure: Pre-train a denoising

. Noisy Denoised
autoencoder (denoiser) on large x=3; — WS — intx=3;
unlabeled data x=5; X = 5;

* (BART/TS5 Lewis et al. 2020, Raffel et al. 2019)



Pre-train + Fine-tune paradigm

* Qutput structure: Pre-train a denoising Noi Denoised
autoencoder (denoiser) on large x=3; — WS — intx=3;

unlabeled data X =5; X = 5;
* (BART/T5 Lewis et al. 2020, Raffel et al. 2019)
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* Input-output mapping: Fine-tune on Inout Output

labeled data set x to 3 — PACEEE™ — int x = 3
setxto 5 X =95;




Pre-train + Fine-tune paradigm

* Qutput structure: Pre-train a denoising

. Noisy Denoised
autoencoder (denoiser) on large x=3; — WS — intx=3;
unlabeled data X=5; =

* (BART/T5 Lewis et al. 2020, Raffel et al. 2019) :

: Initialize

|

L] [} I
* Input-output mapping: Fine-tune on nout outout
npu utpu

|abeIEd data set xto 3 — PHEEIEGIN — int x = 3;
setxtod X =95;

Highly accessible: don’t need unlabeled data during fine-tuning



How well does standard fine-tuning use pre-
trained information?

Experiment:
1. Train standard fine-tuned model initialized from pre-trained denoiser

Standard

setxto 3

Fine-tuned [Euu s X
setxto 5 X

Predictor

3;
S5;



How well does standard fine-tuning use pre-
trained information?

Experiment:

1. Train standard fine-tuned model initialized from pre-trained denoiser
2. Apply the denoiser to the predictions at test-time

Standard [ ,
. Pre-trained
setxto 3 — BELEROLE — X gf '
setxto 5 Predictor X=

int x = 3;
X =D5;




Standard fine-tuning destroys some pre-
trained output structure

In our SansType pseudocode-to-code dataset, re-applying the denoiser post-
hoc improves accuracy by 0.5% to 1.5%
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Outline

* Algorithm: Composed fine-tuning
* Analysis: Composing can reduce complexity

* Experiments: pseudocode-to-code and image generation



Outline

* Algorithm: Composed fine-tuning



Composed Fine-Tuning

Given pre-trained denoiser I, learn the base predictor fg composed
with denoiser on labeled data:

Denoiser

Initialize / ‘\ Unmodified
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Composed Fine-Tuning

Given pre-trained denoiser I, learn the base predictor fg composed
with denoiser on labeled data:

Denoiser
\

Initialize / ‘. Unmodified

ENS

N\
X — Denoiser I Y

predictor

Loss(x,y,0) = £(Il e fa(x),y) + A (fe(x),¥y)

Offload complexity of learning output structure to the pre-trained denoiser



Composed fine-tuning simplifies models

* Target function: staircase function
 valid outputs are integers
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* requires a complex function with many
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Composed fine-tuning simplifies models

* Target function: staircase function
 valid outputs are integers

e Standard fine-tuning fits target directly:

* requires a complex function with many
slope changes

 Composed:

* If denoiser rounds to nearest integer,
base predictor is simple (linear)
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Composed fine-tuning simplifies models

* Target function: staircase function
 valid outputs are integers

e Standard fine-tuning fits target directly:

* requires a complex function with many
slope changes

 Composed:

* If denoiser rounds to nearest integer,
base predictor is simple (linear)

3

> 2

—— Target

= == Standard "

= == Base .
Composed /
7/

0 1 2 3 4

Base predictor is simple (linear) and extrapolates perfectly




Outline

* Analysis: Composing can reduce complexity



Analysis of composed fine-tuning

Setup

* Base model fg: 2 layer ReLU net
with high-dim output

e Denoiser I1: projects to the
nearest valid output

* Complexity measure C(8) : L2
norm of weights 0

Lower complexity -> better generalization

olelele



Analysis of composed fine-tuning

Can composed learning increase complexity?



Analysis of composed fine-tuning

Can composed learning increase complexity?

C(O5¢q) = ming{C(0): fo = 7}
C(Hcomposed) — minH{C(Q): [Tofg = f*}
then
C(Hcomposed) < C(estd)

since fg_,, is a feasible solution of the composed problem.



Analysis of composed fine-tuning

Can composed learning increase complexity?

C(O5¢q) = ming{C(0): fo = 7}
C(Hcomposed) — minH{C(Q): [Tofg = f*}
then
C(Hcomposed) < C(estd)

since fg_,, is a feasible solution of the composed problem.

Composing with a denoiser never increases the complexity



Composing can reduce model complexity

How much does composing decrease complexity?



Composing can reduce model complexity

How much does composing decrease complexity?

* We prove that composing can arbitrarily reduce complexity, depending on
the stability of the target function

C(Qstd)
C(Q composed)

— 00 gs target function is more stable



Composing can reduce model complexity

How much does composing decrease complexity?

* We prove that composing can arbitrarily reduce complexity, depending on
the stability of the target function

C(Qstd)
C(Q composed)

— 00 gs target function is more stable

More stability in input-output mapping -> composing helps more



Outline

* Experiments: pseudocode-to-code and image generation



SN oo WN

Pseudocode-to-code

Example: from our generated SansType dataset, where pseudocode
specifies all but the types

1 4int main () { 1 int main () {
2 string var_8 = "str_2"; 2 string var_8 = "str_2";
set var 8 to "str 2"; 3 bqol var_2; 3 b901 var_2;
: ; 4 cin >> var_2; 4 cin >> var_2;
instantiate var_2; . . 8 .
: 5 var_8 = "str_4" + var_8; 5 var_8 = "str_4" + var_8;
read var_2 from stdin;
= 2 : : 6 var_2 = false; 6 var_2 = false;
add "str_4" to the beginning of var_8;
7 var_5 = true; 7 bool var_5 = true;
set var_2 to false; ; -
8 if ( var_2 ) { 8 if ( var_2 ) {
set var_5 to true; :
: : 9 string temp = var_2; 9 bool temp = var_2;
if var_2 is true, <«
10 var_2 = var_5; 10 var_2 = var_5;
swap the values of var_2 and var_5; . .
: : 11 var_5 = temp; } 11 var_5 = temp; }
if var_2 is truc+ : :
12 if ( var_2 ) { 12 1f ( var. 2 )
, set var_2 to the value of var_5¢ _ _
13 bool temp = var_2; 13 bool temp = var_2;
and var_5 to the value of var_2; 65 =
14 var_2 = var_5; 14 var_2 = var_5;
output wvar_8 to stdout;
: 15 var_5 = temp; } 15 var_5 = temp; }
print var :2;
S 16 cout << var_8; 16 cout << var_8;
p — 4 17 cout << var_2; i By cout << var_2;
18 cout << var_5; 18 cout << var_5;
19 return 0; } 19 return 0; }

Input pseudocode Base predictor Composed



Pseudocode-to-code

* Task: full-program pseudocode-to-code translation with Transformers
(Vaswani et al. 2017) — correct code passes test cases

* Previous works consider line-by-line translation and compiler side information
(Kulal et al 2019, Yasunaga and Liang 2020)



Pseudocode-to-code

* Task: full-program pseudocode-to-code translation with Transformers
(Vaswani et al. 2017) — correct code passes test cases

* Previous works consider line-by-line translation and compiler side information
(Kulal et al 2019, Yasunaga and Liang 2020)

* Validity: code must compile & execute



SansType: synthetic pseudocode-to-code

* Dataset generation: generate pseudocode and code from templates

* Test sets
* In-distribution (ID): same templates as training
e Out-of-distribution (OOD): mix-and-matched ID pseudocode templates



SansType: synthetic pseudocode-to-code

* Dataset generation: generate pseudocode and code from templates

* Test sets
* In-distribution (ID): same templates as training
e Out-of-distribution (OOD): mix-and-matched ID pseudocode templates

* Example:
* ID templates: print <var>, output <var> to stdout

* OOD templates: print <var> to stdout, output <var>,
stdout <var>



SPoC dataset for pseudocode-to-code

* Crowdsourced pseudocode for programming competition code from
codeforces.com



SPoC dataset for pseudocode-to-code

* Crowdsourced pseudocode for programming competition code from
codeforces.com

* Two test sets:
* |D: test generalization to new pseudocode for previously seen programs
* OOD: test generalization to new programs

1  in function main int main() {

2 let n be integer int n;

3 read n cin >> n;

4 let A be vector of integers vector<int> A;

5 set sizeof A=n A.resize(n);

6 read n elements into A for(int i = 0; i < A.size(); i++) cin >> A[i];
7 for all elements in A for(int i = 0; i < A.size(); i++) {

8 set min_ito 1 int min_i = i;

9 for j =1+ 1 to size of A exclusive for(int j = i+1; j < A.size(); j++) {

10 set min_i to j if A[min_i] > A[j] if (A[min_i] > A[j]) { min_i = j; }

11 swap A[i], A[min_i] swap(A[i], A[min_i]);

12 print all elements of A for(int i=0; i<A.size(); i++) cout<<A[i]<<" ";

}

Kulal et al. 2019



Pseudocode-to-code results

e Standard fine-tuning improves over baseline (no pretraining)
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Pseudocode-to-code results

Accuracy (%)
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Standard fine-tuning improves over baseline (no pretraining)

Composed fine-tuning improves both ID and OOD, but especially OOD

5.8% relative

SansType ID

W Baseline

24.5% relative

I 3
Al 1

SansType OOD

m Standard Fine-tuning

% relative

SPoC ID

m Composed Fine-tuning
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Stronger baselines

 Scaled-up baseline: double the number of layers
* Note: pre-trained denoiser is also doubled for these models

 Test-time denoiser: apply denoiser post-hoc to baseline/standard
fine-tuning



Stronger baselines

 Scaled-up baseline: double the number of layers
* Note: pre-trained denoiser is also doubled for these models

 Test-time denoiser: apply denoiser post-hoc to baseline/standard
fine-tuning
* Composed fine-tuning still improves over these (SansType)
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Scaled up Test-time denoiser

Accuracy (%)

M Baseline  m Standard Fine-tuning  ® Composed Fine-tuning



Composed fine-tuning is complementary with
fancier methods

* BART-style fine-tuning
* Two-stage process: freeze later layers first, then fully finetune

* Backtranslation (Sennrich et al. 2015)
* Use unlabeled output data during fine-tuning to create synthetic inputs

88
87

86
85
84
83
-
81

BART-style Backtranslation
m Vanilla mw/ Composed fine-tuning

Accuracy (%)



OOD conditional image generation

Train Test

e &
[D, Disney font] — ® [i, Disney font] —

* Task: given font family and character, output a font image
* Validity: font images have sharp lines, adhere to font styling



OOD conditional image generation

Train Test

e &
[D, Disney font] — ® [i, Disney font] —

* Task: given font family and character, output a font image
* Validity: font images have sharp lines, adhere to font styling

» Useful for prototyping new fonts: supply a few characters and the
model fills in the rest

 Extrapolate to new character-font pairs at test time



OOD conditional image generation

* Image generations for some random fonts (MLP base model)
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OOD conditional image generation

* Image generations for some random fonts (IVILP base model)
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OOD conditional image generation

* Image generations for some random fonts (MLP base model)

(a) Direct (b) Composed (c) Base

Base predictor is simpler — gray and blobby outputs



Takeaways

e Standard fine-tuning can destroy some
output structure pre-trained by denoising
unlabeled outputs
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Takeaways

e Standard fine-tuning can destroy some

output structure pre-trained by denoising |
unlabeled outputs Denoiser

* Composed fine-tuning preserves it by initialize ,* "\ Unmodified

\

freezing the denoiser. Base predictor only
. . Base
needs to learn the input-output mapping x —
* Composed fine-tuning leads to reduced

complexity and better generalization,
especially OOD!
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