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High-dimensional output spaces

Code Molecules Natural ImagesLanguage

Output structure: only some outputs are valid

Compiles/Executes Forms a stable molecule Grammar/syntax Physical constraints, 
familiar objects, sharp 
lines



Supervised learning

• Example: Pseudocode-to-code (Kulal et al. 2019)
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Input

set x to 3
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Output
int x = 3;
x = 5;



Supervised learning

• Example: Pseudocode-to-code (Kulal et al. 2019)

Predictor handles both input-output mapping and output structure

Direct predictor
Input

set x to 3
set x to 5

Output
int x = 3;
x = 5;



”Unlabeled” output data is abundant



”Unlabeled” output data is abundant

Unlabeled output data can be used for learning the output structure
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Unlabeled outputs: not standard SSL

• Standard semi-supervised learning: 
unlabeled inputs for improving 
classifier

• Leveraging unlabeled outputs 
requires a different way of thinking

Oliver et al.  2018



Pre-train + Fine-tune paradigm

• Output structure: Pre-train a denoising 
autoencoder (denoiser) on large 
unlabeled data

• (BART/T5 Lewis et al. 2020, Raffel et al. 2019)
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Pre-train + Fine-tune paradigm

• Output structure: Pre-train a denoising 
autoencoder (denoiser) on large 
unlabeled data

• (BART/T5 Lewis et al. 2020, Raffel et al. 2019)

• Input-output mapping: Fine-tune on 
labeled data

Denoiser
Noisy
x = 3;
x = 5;

Denoised
int x = 3;
x = 5;

Predictor
Input

set x to 3
set x to 5

Initialize

Output
int x = 3;
x = 5;

Highly accessible: don’t need unlabeled data during fine-tuning



How well does standard fine-tuning use pre-
trained information?
Experiment:
1. Train standard fine-tuned model initialized from pre-trained denoiser

Standard 
Fine-tuned
Predictor

set x to 3
set x to 5

x = 3;
x = 5;



How well does standard fine-tuning use pre-
trained information?
Experiment:
1. Train standard fine-tuned model initialized from pre-trained denoiser
2. Apply the denoiser to the predictions at test-time

Standard 
Fine-tuned
Predictor

set x to 3
set x to 5

Pre-trained 
Denoiser

int x = 3;
x = 5;

x = 3;
x = 5;



Standard fine-tuning destroys some pre-
trained output structure
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In our SansType pseudocode-to-code dataset, re-applying the denoiser post-
hoc improves accuracy by 0.5% to 1.5% 



Outline

• Algorithm: Composed fine-tuning

• Analysis: Composing can reduce complexity

• Experiments: pseudocode-to-code and image generation



Outline

• Algorithm: Composed fine-tuning

• Analysis: Composing can reduce complexity

• Experiments: pseudocode-to-code and image generation



Composed Fine-Tuning

Given pre-trained denoiser Π, learn the base predictor 𝑓! composed 
with denoiser on labeled data:

𝐿𝑜𝑠𝑠 𝑥, 𝑦, 𝜃 = ℓ Π ∘ 𝑓! 𝑥 , 𝑦 + 𝜆ℓ(𝑓! 𝑥 , 𝑦)

Base 
predictor Denoiser𝑥 1𝑦

Denoiser

Initialize Unmodified



Composed Fine-Tuning

Given pre-trained denoiser Π, learn the base predictor 𝑓! composed 
with denoiser on labeled data:

𝐿𝑜𝑠𝑠 𝑥, 𝑦, 𝜃 = ℓ Π ∘ 𝑓! 𝑥 , 𝑦 + 𝜆ℓ(𝑓! 𝑥 , 𝑦)

Base 
predictor Denoiser𝑥 1𝑦

Denoiser

Initialize Unmodified

Offload complexity of learning output structure to the pre-trained denoiser
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• Target function: staircase function
• valid outputs are integers
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Composed fine-tuning simplifies models

• Target function: staircase function
• valid outputs are integers

• Standard fine-tuning fits target directly:
• requires a complex function with many 

slope changes

• Composed: 
• If denoiser rounds to nearest integer,   

base predictor is simple (linear)

Base predictor is simple (linear) and extrapolates perfectly



Outline

• Algorithm: Composed fine-tuning

• Analysis: Composing can reduce complexity

• Experiments: pseudocode-to-code and image generation



Analysis of composed fine-tuning

Setup
• Base model 𝑓!: 2 layer ReLU net 

with high-dim output
• Denoiser Π: projects to the 

nearest valid output
• Complexity measure 𝐶 𝜃 : L2

norm of weights 𝜃

Lower complexity -> better generalization
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Can composed learning increase complexity?

𝐶 𝜃"#$ = min! 𝐶 𝜃 : 𝑓! = 𝑓∗
𝐶 𝜃&'()'"*$ = min! 𝐶 𝜃 : Π ∘ 𝑓! = 𝑓∗
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since 𝑓!!"# is a feasible solution of the composed problem.



Analysis of composed fine-tuning
Can composed learning increase complexity?

𝐶 𝜃"#$ = min! 𝐶 𝜃 : 𝑓! = 𝑓∗
𝐶 𝜃&'()'"*$ = min! 𝐶 𝜃 : Π ∘ 𝑓! = 𝑓∗

then
𝐶 𝜃&'()'"*$ ≤ 𝐶 𝜃"#$

since 𝑓!!"# is a feasible solution of the composed problem.

Composing with a denoiser never increases the complexity



Composing can reduce model complexity

How much does composing decrease complexity?



Composing can reduce model complexity

How much does composing decrease complexity?
• We prove that composing can arbitrarily reduce complexity, depending on 

the stability of the target function

+ !!"#
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→ ∞ as target function is more stable



Composing can reduce model complexity

How much does composing decrease complexity?
• We prove that composing can arbitrarily reduce complexity, depending on 

the stability of the target function

+ !!"#
+ !$%&'%!(#

→ ∞ as target function is more stable

More stability in input-output mapping -> composing helps more



Outline

• Algorithm: Composed fine-tuning

• Analysis: Composing can reduce complexity

• Experiments: pseudocode-to-code and image generation



Pseudocode-to-code

Input pseudocode Base predictor Composed

Example: from our generated SansType dataset, where pseudocode 
specifies all but the types



Pseudocode-to-code

• Task: full-program pseudocode-to-code translation with Transformers 
(Vaswani et al. 2017) – correct code passes test cases
• Previous works consider line-by-line translation and compiler side information 

(Kulal et al 2019, Yasunaga and Liang 2020)



Pseudocode-to-code

• Task: full-program pseudocode-to-code translation with Transformers 
(Vaswani et al. 2017) – correct code passes test cases
• Previous works consider line-by-line translation and compiler side information 

(Kulal et al 2019, Yasunaga and Liang 2020)

• Validity: code must compile & execute
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• Dataset generation: generate pseudocode and code from templates
• Test sets
• In-distribution (ID): same templates as training
• Out-of-distribution (OOD): mix-and-matched ID pseudocode templates



SansType: synthetic pseudocode-to-code

• Dataset generation: generate pseudocode and code from templates
• Test sets
• In-distribution (ID): same templates as training
• Out-of-distribution (OOD): mix-and-matched ID pseudocode templates

• Example:
• ID templates: print <var>, output <var> to stdout
• OOD templates: print <var> to stdout, output <var>, 
stdout <var>



SPoC dataset for pseudocode-to-code

• Crowdsourced pseudocode for programming competition code from 
codeforces.com



SPoC dataset for pseudocode-to-code

• Crowdsourced pseudocode for programming competition code from 
codeforces.com
• Two test sets: 
• ID: test generalization to new pseudocode for previously seen programs
• OOD: test generalization to new programs

Kulal et al. 2019



Pseudocode-to-code results
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• Standard fine-tuning improves over baseline (no pretraining)
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5.8% relative

24.5% relative

3% relative

4.1% relative

• Standard fine-tuning improves over baseline (no pretraining)
• Composed fine-tuning improves both ID and OOD, but especially OOD



Stronger baselines
• Scaled-up baseline: double the number of layers 
• Note: pre-trained denoiser is also doubled for these models

• Test-time denoiser: apply denoiser post-hoc to baseline/standard 
fine-tuning



Stronger baselines
• Scaled-up baseline: double the number of layers 
• Note: pre-trained denoiser is also doubled for these models

• Test-time denoiser: apply denoiser post-hoc to baseline/standard 
fine-tuning
• Composed fine-tuning still improves over these (SansType)
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Composed fine-tuning is complementary with 
fancier methods
• BART-style fine-tuning
• Two-stage process: freeze later layers first, then fully finetune

• Backtranslation (Sennrich et al. 2015)
• Use unlabeled output data during fine-tuning to create synthetic inputs
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OOD conditional image generation

• Task: given font family and character, output a font image
• Validity: font images have sharp lines, adhere to font styling

[D, Disney font]

Train Test

[i, Disney font]



OOD conditional image generation

• Task: given font family and character, output a font image
• Validity: font images have sharp lines, adhere to font styling

• Useful for prototyping new fonts: supply a few characters and the 
model fills in the rest
• Extrapolate to new character-font pairs at test time

[D, Disney font]

Train Test

[i, Disney font]



OOD conditional image generation

• Image generations for some random fonts (MLP base model)



OOD conditional image generation

• Image generations for some random fonts (MLP base model)



OOD conditional image generation

• Image generations for some random fonts (MLP base model)

Base predictor is simpler – gray and blobby outputs
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Takeaways

• Standard fine-tuning can destroy some 
output structure pre-trained by denoising 
unlabeled outputs
• Composed fine-tuning preserves it by 

freezing the denoiser. Base predictor only 
needs to learn the input-output mapping
• Composed fine-tuning leads to reduced 

complexity and better generalization, 
especially OOD!

Base 
predictor Denoiser𝑥 1𝑦

Denoiser

Initialize Unmodified
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