
Composed Fine-Tuning:
Freezing Pre-trained Denoising

Autoencoders for Improved Generalization
Sang Michael Xie, Tengyu Ma, Percy Liang

ICML 2021

High-dimensional output spaces

Code Molecules Natural ImagesLanguage

High-dimensional output spaces

Code Molecules Natural ImagesLanguage

Output structure: only some outputs are valid

Compiles/Executes Forms a stable molecule Grammar/syntax Physical constraints,
familiar objects, sharp
lines

Supervised learning

• Example: Pseudocode-to-code (Kulal et al. 2019)

Direct predictor
Input

set x to 3
set x to 5

Output
int x = 3;
x = 5;

Supervised learning

• Example: Pseudocode-to-code (Kulal et al. 2019)

Predictor handles both input-output mapping and output structure

Direct predictor
Input

set x to 3
set x to 5

Output
int x = 3;
x = 5;

”Unlabeled” output data is abundant

”Unlabeled” output data is abundant

Unlabeled output data can be used for learning the output structure

Unlabeled outputs: not standard SSL

• Standard semi-supervised learning:
unlabeled inputs for improving
classifier

Oliver et al. 2018

Unlabeled outputs: not standard SSL

• Standard semi-supervised learning:
unlabeled inputs for improving
classifier

• Leveraging unlabeled outputs
requires a different way of thinking

Oliver et al. 2018

Pre-train + Fine-tune paradigm

• Output structure: Pre-train a denoising
autoencoder (denoiser) on large
unlabeled data

• (BART/T5 Lewis et al. 2020, Raffel et al. 2019)

Denoiser
Noisy
x = 3;
x = 5;

Denoised
int x = 3;
x = 5;

Pre-train + Fine-tune paradigm

• Output structure: Pre-train a denoising
autoencoder (denoiser) on large
unlabeled data

• (BART/T5 Lewis et al. 2020, Raffel et al. 2019)

• Input-output mapping: Fine-tune on
labeled data

Denoiser
Noisy
x = 3;
x = 5;

Denoised
int x = 3;
x = 5;

Predictor
Input

set x to 3
set x to 5

Initialize

Output
int x = 3;
x = 5;

Pre-train + Fine-tune paradigm

• Output structure: Pre-train a denoising
autoencoder (denoiser) on large
unlabeled data

• (BART/T5 Lewis et al. 2020, Raffel et al. 2019)

• Input-output mapping: Fine-tune on
labeled data

Denoiser
Noisy
x = 3;
x = 5;

Denoised
int x = 3;
x = 5;

Predictor
Input

set x to 3
set x to 5

Initialize

Output
int x = 3;
x = 5;

Highly accessible: don’t need unlabeled data during fine-tuning

How well does standard fine-tuning use pre-
trained information?
Experiment:
1. Train standard fine-tuned model initialized from pre-trained denoiser

Standard
Fine-tuned
Predictor

set x to 3
set x to 5

x = 3;
x = 5;

How well does standard fine-tuning use pre-
trained information?
Experiment:
1. Train standard fine-tuned model initialized from pre-trained denoiser
2. Apply the denoiser to the predictions at test-time

Standard
Fine-tuned
Predictor

set x to 3
set x to 5

Pre-trained
Denoiser

int x = 3;
x = 5;

x = 3;
x = 5;

Standard fine-tuning destroys some pre-
trained output structure

79

79.5

80

80.5

81

81.5

6 layers 12 layers

Standard FT Standard FT + Denoiser

Ac
cu

ra
cy

 (%
)

In our SansType pseudocode-to-code dataset, re-applying the denoiser post-
hoc improves accuracy by 0.5% to 1.5%

Outline

• Algorithm: Composed fine-tuning

• Analysis: Composing can reduce complexity

• Experiments: pseudocode-to-code and image generation

Outline

• Algorithm: Composed fine-tuning

• Analysis: Composing can reduce complexity

• Experiments: pseudocode-to-code and image generation

Composed Fine-Tuning

Given pre-trained denoiser Π, learn the base predictor 𝑓! composed
with denoiser on labeled data:

𝐿𝑜𝑠𝑠 𝑥, 𝑦, 𝜃 = ℓ Π ∘ 𝑓! 𝑥 , 𝑦 + 𝜆ℓ(𝑓! 𝑥 , 𝑦)

Base
predictor Denoiser𝑥 1𝑦

Denoiser

Initialize Unmodified

Composed Fine-Tuning

Given pre-trained denoiser Π, learn the base predictor 𝑓! composed
with denoiser on labeled data:

𝐿𝑜𝑠𝑠 𝑥, 𝑦, 𝜃 = ℓ Π ∘ 𝑓! 𝑥 , 𝑦 + 𝜆ℓ(𝑓! 𝑥 , 𝑦)

Base
predictor Denoiser𝑥 1𝑦

Denoiser

Initialize Unmodified

Offload complexity of learning output structure to the pre-trained denoiser

Composed fine-tuning simplifies models

• Target function: staircase function
• valid outputs are integers

Composed fine-tuning simplifies models

• Target function: staircase function
• valid outputs are integers

• Standard fine-tuning fits target directly:
• requires a complex function with many

slope changes

Composed fine-tuning simplifies models

• Target function: staircase function
• valid outputs are integers

• Standard fine-tuning fits target directly:
• requires a complex function with many

slope changes

• Composed:
• If denoiser rounds to nearest integer,

base predictor is simple (linear)

Composed fine-tuning simplifies models

• Target function: staircase function
• valid outputs are integers

• Standard fine-tuning fits target directly:
• requires a complex function with many

slope changes

• Composed:
• If denoiser rounds to nearest integer,

base predictor is simple (linear)

Base predictor is simple (linear) and extrapolates perfectly

Outline

• Algorithm: Composed fine-tuning

• Analysis: Composing can reduce complexity

• Experiments: pseudocode-to-code and image generation

Analysis of composed fine-tuning

Setup
• Base model 𝑓!: 2 layer ReLU net

with high-dim output
• Denoiser Π: projects to the

nearest valid output
• Complexity measure 𝐶 𝜃 : L2

norm of weights 𝜃

Lower complexity -> better generalization

Analysis of composed fine-tuning
Can composed learning increase complexity?

Analysis of composed fine-tuning
Can composed learning increase complexity?

𝐶 𝜃"#$ = min! 𝐶 𝜃 : 𝑓! = 𝑓∗
𝐶 𝜃&'()'"*$ = min! 𝐶 𝜃 : Π ∘ 𝑓! = 𝑓∗

then
𝐶 𝜃&'()'"*$ ≤ 𝐶 𝜃"#$

since 𝑓!!"# is a feasible solution of the composed problem.

Analysis of composed fine-tuning
Can composed learning increase complexity?

𝐶 𝜃"#$ = min! 𝐶 𝜃 : 𝑓! = 𝑓∗
𝐶 𝜃&'()'"*$ = min! 𝐶 𝜃 : Π ∘ 𝑓! = 𝑓∗

then
𝐶 𝜃&'()'"*$ ≤ 𝐶 𝜃"#$

since 𝑓!!"# is a feasible solution of the composed problem.

Composing with a denoiser never increases the complexity

Composing can reduce model complexity

How much does composing decrease complexity?

Composing can reduce model complexity

How much does composing decrease complexity?
• We prove that composing can arbitrarily reduce complexity, depending on

the stability of the target function

+ !!"#
+ !$%&'%!(#

→ ∞ as target function is more stable

Composing can reduce model complexity

How much does composing decrease complexity?
• We prove that composing can arbitrarily reduce complexity, depending on

the stability of the target function

+ !!"#
+ !$%&'%!(#

→ ∞ as target function is more stable

More stability in input-output mapping -> composing helps more

Outline

• Algorithm: Composed fine-tuning

• Analysis: Composing can reduce complexity

• Experiments: pseudocode-to-code and image generation

Pseudocode-to-code

Input pseudocode Base predictor Composed

Example: from our generated SansType dataset, where pseudocode
specifies all but the types

Pseudocode-to-code

• Task: full-program pseudocode-to-code translation with Transformers
(Vaswani et al. 2017) – correct code passes test cases
• Previous works consider line-by-line translation and compiler side information

(Kulal et al 2019, Yasunaga and Liang 2020)

Pseudocode-to-code

• Task: full-program pseudocode-to-code translation with Transformers
(Vaswani et al. 2017) – correct code passes test cases
• Previous works consider line-by-line translation and compiler side information

(Kulal et al 2019, Yasunaga and Liang 2020)

• Validity: code must compile & execute

SansType: synthetic pseudocode-to-code

• Dataset generation: generate pseudocode and code from templates
• Test sets
• In-distribution (ID): same templates as training
• Out-of-distribution (OOD): mix-and-matched ID pseudocode templates

SansType: synthetic pseudocode-to-code

• Dataset generation: generate pseudocode and code from templates
• Test sets
• In-distribution (ID): same templates as training
• Out-of-distribution (OOD): mix-and-matched ID pseudocode templates

• Example:
• ID templates: print <var>, output <var> to stdout
• OOD templates: print <var> to stdout, output <var>,
stdout <var>

SPoC dataset for pseudocode-to-code

• Crowdsourced pseudocode for programming competition code from
codeforces.com

SPoC dataset for pseudocode-to-code

• Crowdsourced pseudocode for programming competition code from
codeforces.com
• Two test sets:
• ID: test generalization to new pseudocode for previously seen programs
• OOD: test generalization to new programs

Kulal et al. 2019

Pseudocode-to-code results

0

10

20

30

40

50

60

70

80

90

SansType ID SansType OOD SPoC ID SPoC OOD
Baseline Standard Fine-tuning

Ac
cu

ra
cy

 (%
)

• Standard fine-tuning improves over baseline (no pretraining)

Pseudocode-to-code results

0

10

20

30

40

50

60

70

80

90

SansType ID SansType OOD SPoC ID SPoC OOD
Baseline Standard Fine-tuning Composed Fine-tuning

Ac
cu

ra
cy

 (%
)

5.8% relative

24.5% relative

3% relative

4.1% relative

• Standard fine-tuning improves over baseline (no pretraining)
• Composed fine-tuning improves both ID and OOD, but especially OOD

Stronger baselines
• Scaled-up baseline: double the number of layers
• Note: pre-trained denoiser is also doubled for these models

• Test-time denoiser: apply denoiser post-hoc to baseline/standard
fine-tuning

Stronger baselines
• Scaled-up baseline: double the number of layers
• Note: pre-trained denoiser is also doubled for these models

• Test-time denoiser: apply denoiser post-hoc to baseline/standard
fine-tuning
• Composed fine-tuning still improves over these (SansType)

0
10
20
30
40
50
60
70
80
90

Scaled up Test-time denoiser
Baseline Standard Fine-tuning Composed Fine-tuning

Ac
cu

ra
cy

 (%
)

Composed fine-tuning is complementary with
fancier methods
• BART-style fine-tuning
• Two-stage process: freeze later layers first, then fully finetune

• Backtranslation (Sennrich et al. 2015)
• Use unlabeled output data during fine-tuning to create synthetic inputs

81

82

83

84

85

86

87

88

BART-style Backtranslation
Vanilla w/ Composed fine-tuning

Ac
cu

ra
cy

 (%
)

OOD conditional image generation

• Task: given font family and character, output a font image
• Validity: font images have sharp lines, adhere to font styling

[D, Disney font]

Train Test

[i, Disney font]

OOD conditional image generation

• Task: given font family and character, output a font image
• Validity: font images have sharp lines, adhere to font styling

• Useful for prototyping new fonts: supply a few characters and the
model fills in the rest
• Extrapolate to new character-font pairs at test time

[D, Disney font]

Train Test

[i, Disney font]

OOD conditional image generation

• Image generations for some random fonts (MLP base model)

OOD conditional image generation

• Image generations for some random fonts (MLP base model)

OOD conditional image generation

• Image generations for some random fonts (MLP base model)

Base predictor is simpler – gray and blobby outputs

Takeaways

• Standard fine-tuning can destroy some
output structure pre-trained by denoising
unlabeled outputs

Takeaways

• Standard fine-tuning can destroy some
output structure pre-trained by denoising
unlabeled outputs
• Composed fine-tuning preserves it by

freezing the denoiser. Base predictor only
needs to learn the input-output mapping Base

predictor Denoiser𝑥 1𝑦

Denoiser

Initialize Unmodified

Takeaways

• Standard fine-tuning can destroy some
output structure pre-trained by denoising
unlabeled outputs
• Composed fine-tuning preserves it by

freezing the denoiser. Base predictor only
needs to learn the input-output mapping
• Composed fine-tuning leads to reduced

complexity and better generalization,
especially OOD!

Base
predictor Denoiser𝑥 1𝑦

Denoiser

Initialize Unmodified

Thanks!

We thank Michi Yasunaga, Robin Jia, Albert Gu, Karan Goel, Rohan
Taori, and reviewers for helpful discussions and comments. SMX is
supported by an NDSEG Graduate Fellowship. The work is partially
supported by a PECASE award, SDSI, and SAIL at Stanford University.

