Bias-Free Scalable Gaussian Processes via Randomized Truncations

Andres Potapzynski *, Luhuan Wu *, **Dan Biderman** *, Geoff Pleiss, John Cunningham

Gaussian Process hyperparameter learning

Loss = model complexity + fitting error $\operatorname{argmin} \theta \longrightarrow$

 $\log \det(\mathbf{K}_{\theta})$

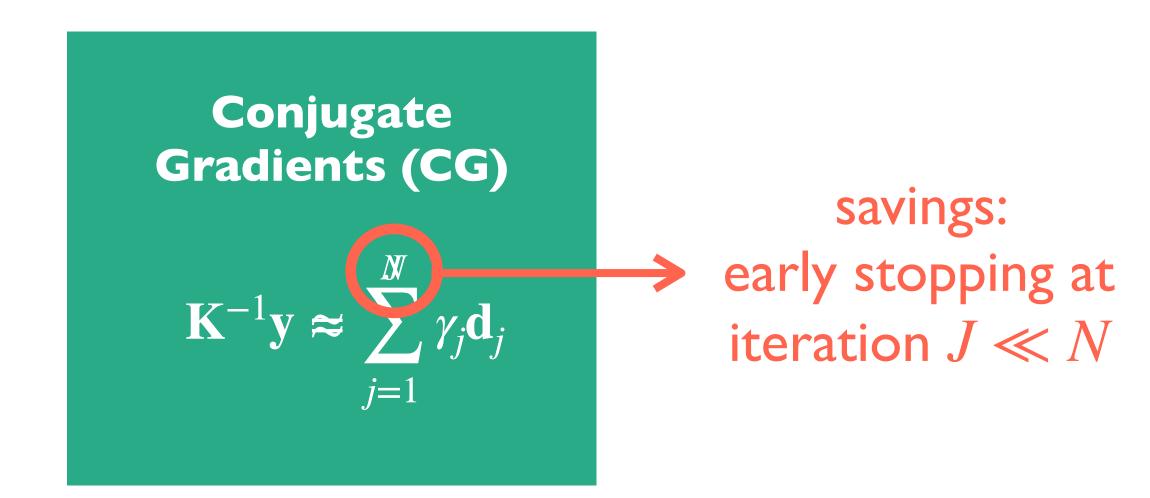
scalable approximations



Rahimi and Recht (2008)

$$\mathbf{K}_{\theta}^{-1}\mathbf{y}$$

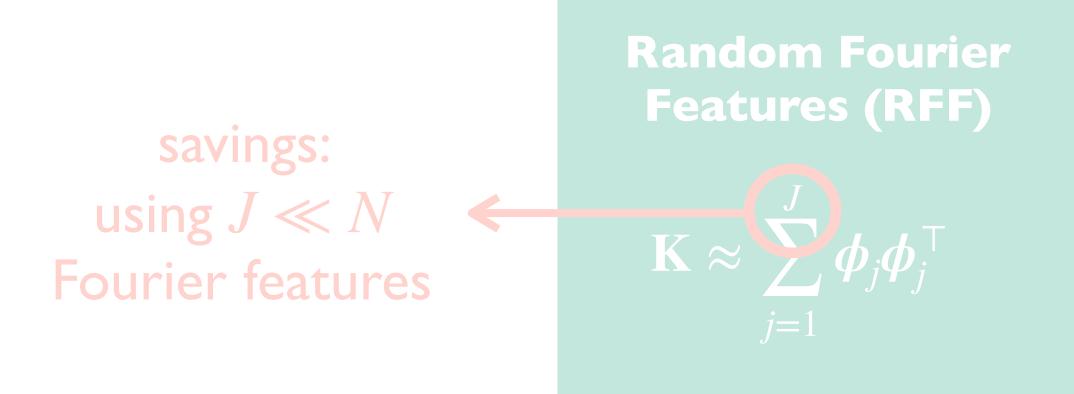
 $K_{\theta}: N \times N$



Cunningham et al., 2008, Cutajar et al., 2016, Gardner, Pleiss et al., 2018

How do early-truncation procedures affect GP learning?

computation VS bias



Rahimi and Recht (2008)

Loss = model complexity + fitting error

scalable approximations

Conjugate Gradients (CG) savings: early stopping at iteration $J \ll N$

Cunningham et al., 2008, Cutajar et al., 2016, Gardner, Pleiss et al., 2018

Thm I: CG underfits the data

Loss = model complexity + fitting error

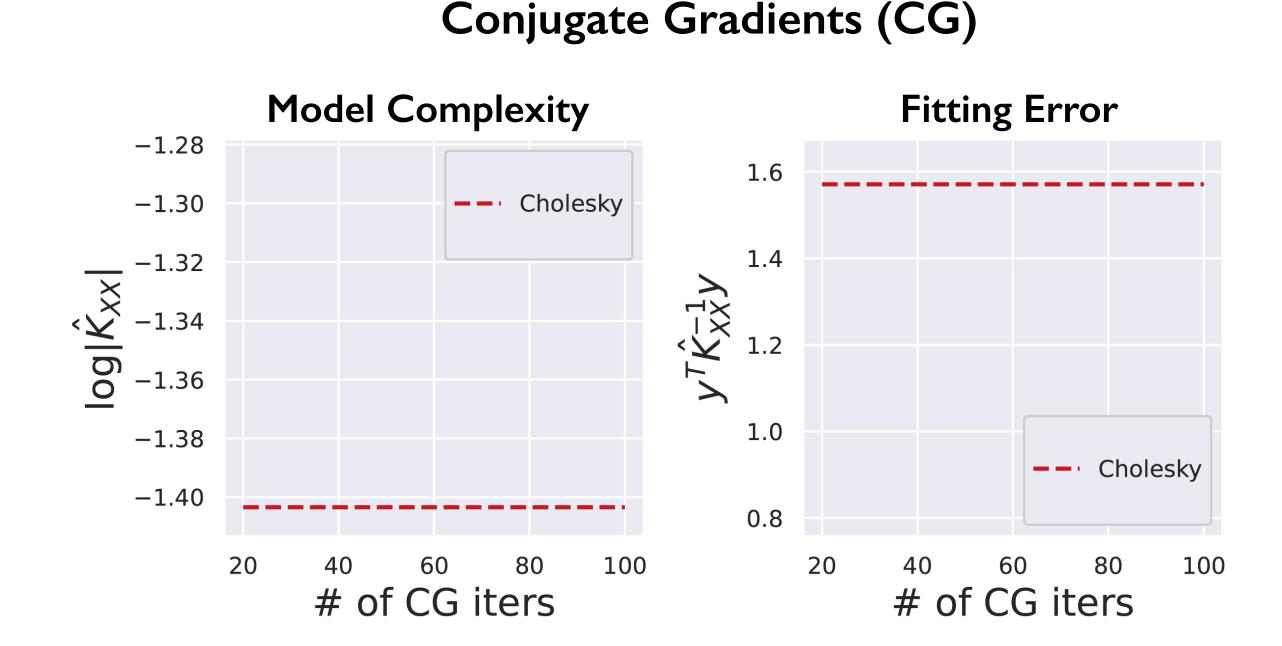
Theorem 1. Let u_J and v_J be the estimates of $\mathbf{y}^{\top} \widehat{\mathbf{K}}_{\mathbf{X}\mathbf{X}}^{-1} \mathbf{y}$ and $\log |\widehat{\mathbf{K}}_{\mathbf{X}\mathbf{X}}|$ respectively after J iterations of CG; i.e.:

$$u_J = \mathbf{y}^{\top} \left(\sum_{i=1}^J \gamma_i \mathbf{d}_i \right), \quad v_J = \|\mathbf{z}\|^2 \mathbf{e}_1^{\top} \left(\log \mathbf{T}_{\mathbf{z}}^{(J)} \right) \mathbf{e}_1.$$

If J < N, CG underestimates the inverse quadratic term and overestimates the log determinant in expectation:

$$u_J \leq \mathbf{y}^{\top} \widehat{\mathbf{K}}_{\mathbf{X}\mathbf{X}}^{-1} \mathbf{y}, \quad \mathbb{E}_{\mathbf{z}}[v_J] \geq \log |\widehat{\mathbf{K}}_{\mathbf{X}\mathbf{X}}|.$$
 (9)

The biases of both terms decay at a rate of $\mathcal{O}(C^{-2J})$, where C is a constant that depends on the conditioning of $\widehat{\mathbf{K}}_{\mathbf{X}\mathbf{X}}$.



Thm I: CG underfits the data

Loss = model complexity + fitting error

20

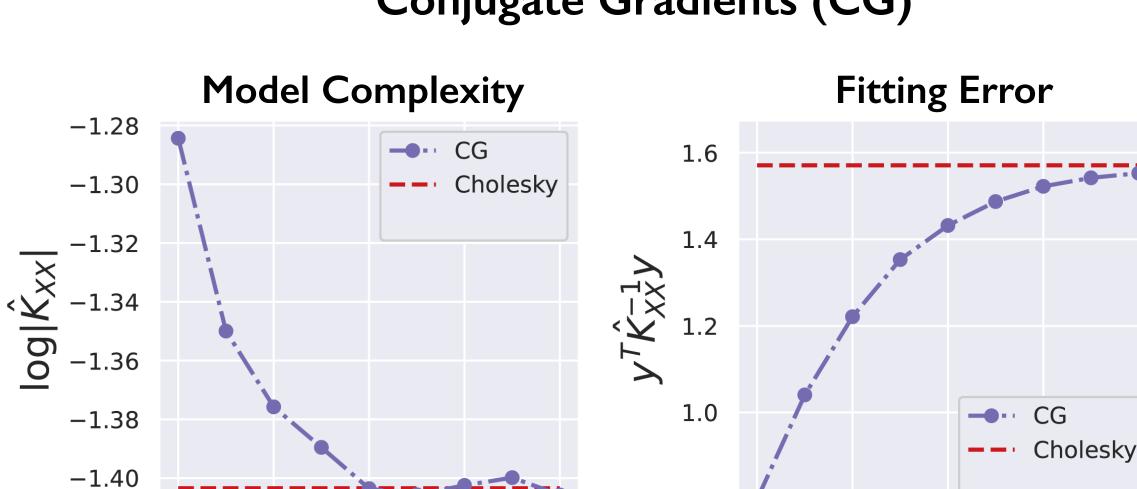
Theorem 1. Let u_J and v_J be the estimates of $\mathbf{y}^{\top} \widehat{\mathbf{K}}_{\mathbf{X}\mathbf{X}}^{-1} \mathbf{y}$ and $\log |\widehat{\mathbf{K}}_{\mathbf{X}\mathbf{X}}|$ respectively after J iterations of CG; i.e.:

$$u_J = \mathbf{y}^{\top} \left(\sum_{i=1}^J \gamma_i \mathbf{d}_i \right), \quad v_J = \|\mathbf{z}\|^2 \mathbf{e}_1^{\top} \left(\log \mathbf{T}_{\mathbf{z}}^{(J)} \right) \mathbf{e}_1.$$

If J < N, CG underestimates the inverse quadratic term and overestimates the log determinant in expectation:

$$u_J \leq \mathbf{y}^{\top} \widehat{\mathbf{K}}_{\mathbf{X}\mathbf{X}}^{-1} \mathbf{y}, \quad \mathbb{E}_{\mathbf{z}}[v_J] \geq \log |\widehat{\mathbf{K}}_{\mathbf{X}\mathbf{X}}|.$$
 (9)

The biases of both terms decay at a rate of $\mathcal{O}(C^{-2J})$, where C is a constant that depends on the conditioning of $\widehat{\mathbf{K}}_{\mathbf{X}\mathbf{X}}$.



Conjugate Gradients (CG)

0.8

20

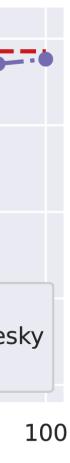
of CG iters

100

underestimation

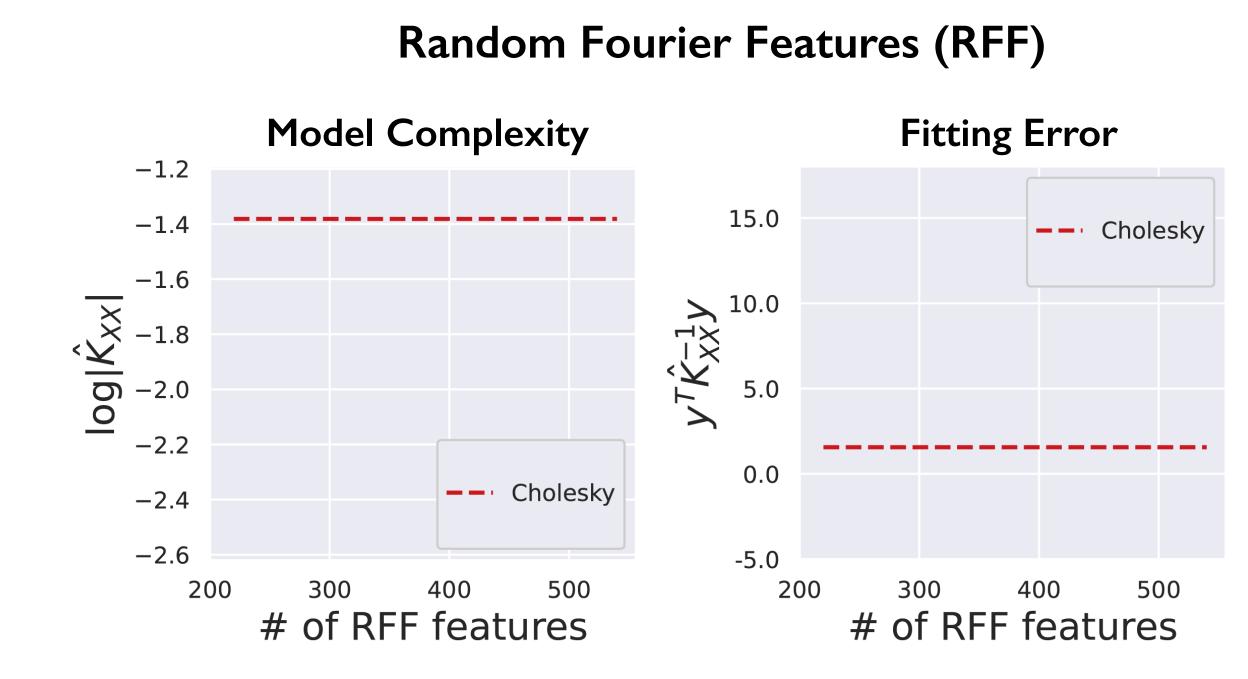
60

of CG iters



80

Thm 2: RFF overfits the data



Loss = model complexity + fitting error

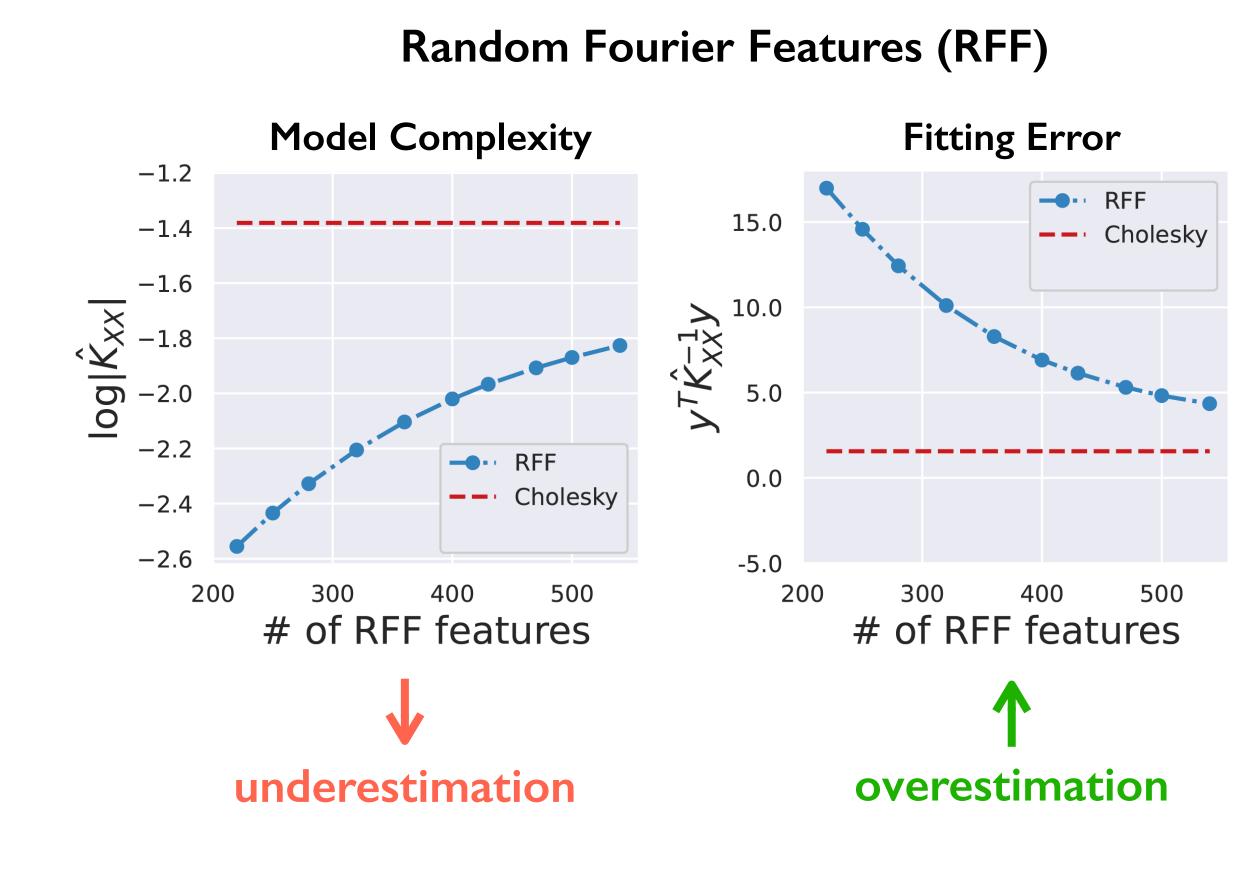
Theorem 2. Let $\widetilde{\mathbf{K}}_J$ be the RFF approximation with J/2random features. In expectation, \mathbf{K}_{J} overestimates the inverse quadratic and underestimates the log determinant:

$$\mathbb{E}_{\mathbb{P}(\boldsymbol{\omega})}\left[\mathbf{y}^{\top}\widetilde{\mathbf{K}}_{J}^{-1}\mathbf{y}\right] \geq \mathbf{y}^{\top}\widehat{\mathbf{K}}_{\mathbf{X}\mathbf{X}}^{-1}\mathbf{y} \qquad (1)$$

$$\mathbb{E}_{\mathbb{P}(\boldsymbol{\omega})}\left[\log|\widetilde{\mathbf{K}}_{J}|\right] \leq \log|\widehat{\mathbf{K}}_{\mathbf{X}\mathbf{X}}|.$$
(1)

The biases of both terms decay at a rate of $\mathcal{O}(1/J)$.

Thm 2: RFF overfits the data



Loss = model complexity + fitting error

Theorem 2. Let $\widetilde{\mathbf{K}}_J$ be the RFF approximation with J/2random features. In expectation, \mathbf{K}_{J} overestimates the inverse quadratic and underestimates the log determinant:

$$\mathbb{E}_{\mathbb{P}(\boldsymbol{\omega})}\left[\mathbf{y}^{\top}\widetilde{\mathbf{K}}_{J}^{-1}\mathbf{y}\right] \geq \mathbf{y}^{\top}\widehat{\mathbf{K}}_{\mathbf{X}\mathbf{X}}^{-1}\mathbf{y} \qquad (1)$$

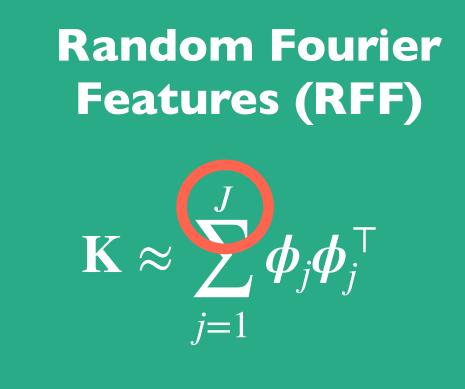
$$\mathbb{E}_{\mathbb{P}(\boldsymbol{\omega})}\left[\log|\widetilde{\mathbf{K}}_{J}|\right] \leq \log|\widehat{\mathbf{K}}_{\mathbf{X}\mathbf{X}}|.$$
(1)

The biases of both terms decay at a rate of $\mathcal{O}(1/J)$.

Our method: Bias elimination via randomized truncation

Single Sample RFF

Lynne et al., 2015, Beatson & Adams, 2018

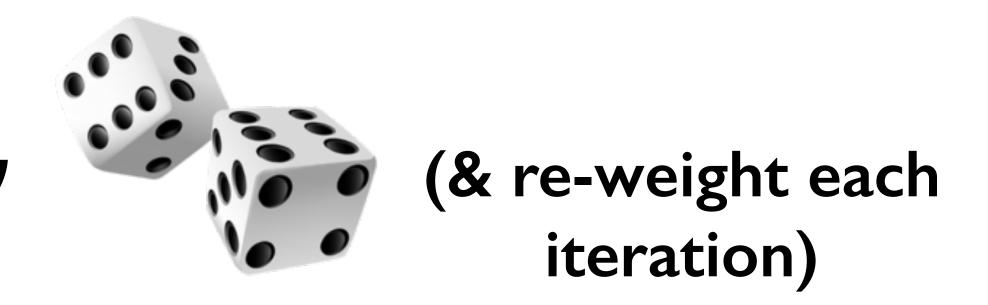


computation VS bias variance

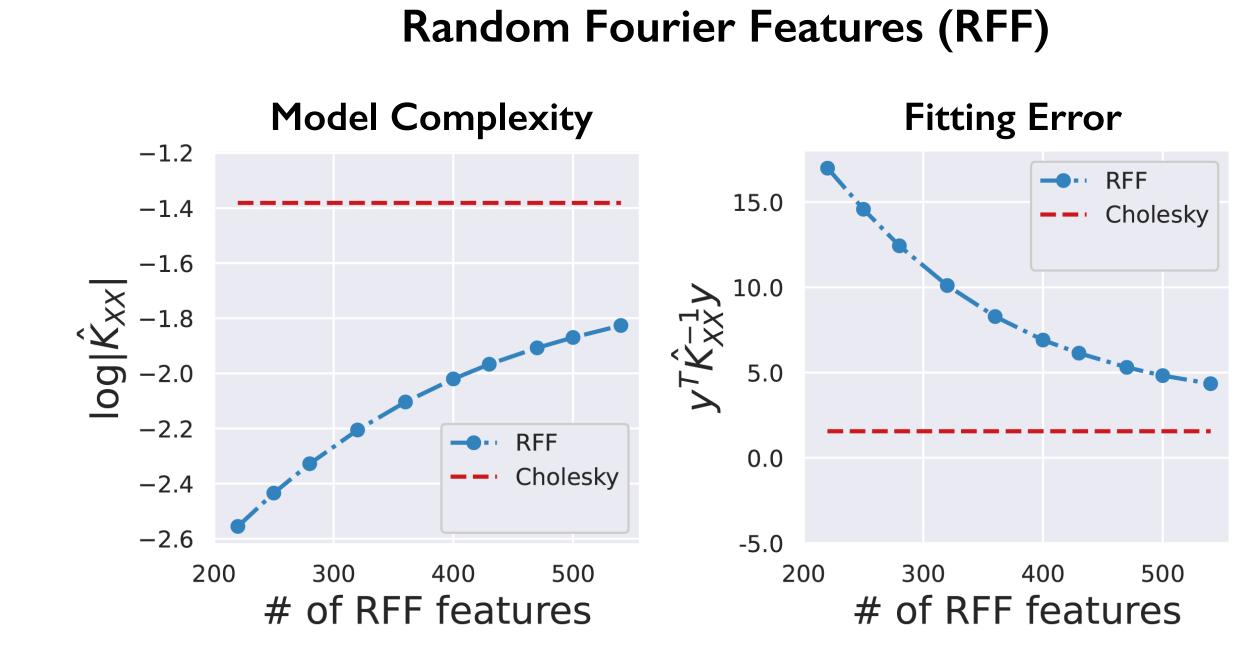
 $\mathbf{K}^{-1}\mathbf{y} \approx \sum \gamma_j \mathbf{d}_j$

Russian Roulette CG

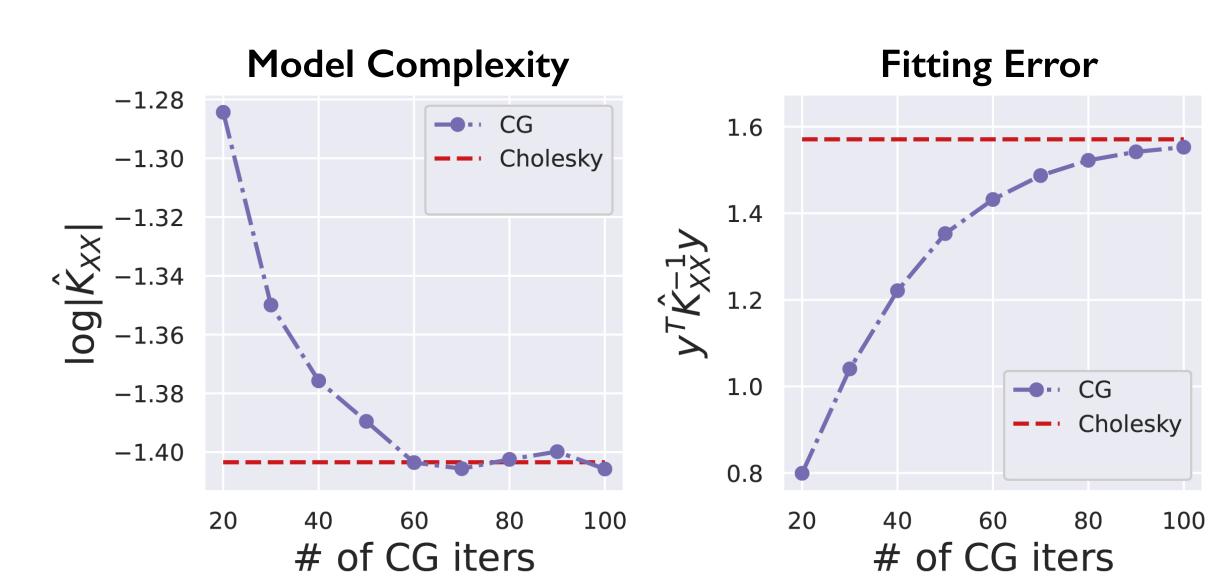
Kahn, 1955, Beatson & Adams, 2018, Chen et al., 2019



Our method: Bias elimination via randomized truncation



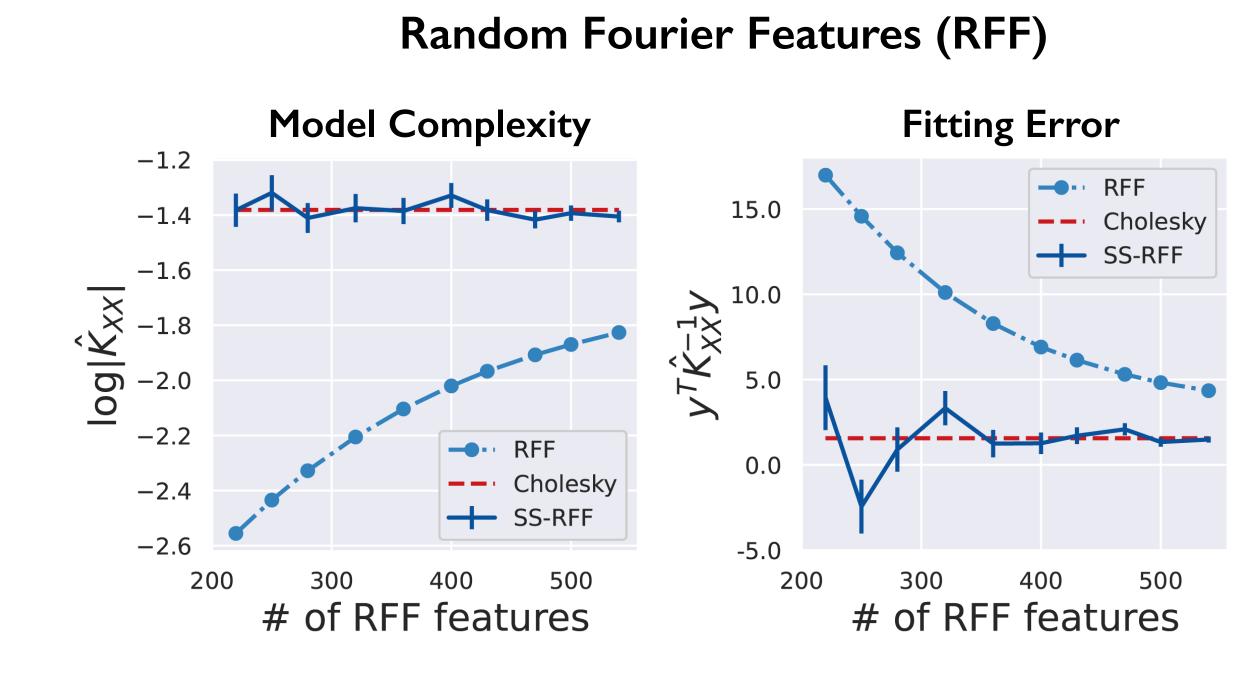
Loss = model complexity + fitting error



Conjugate Gradients (CG)

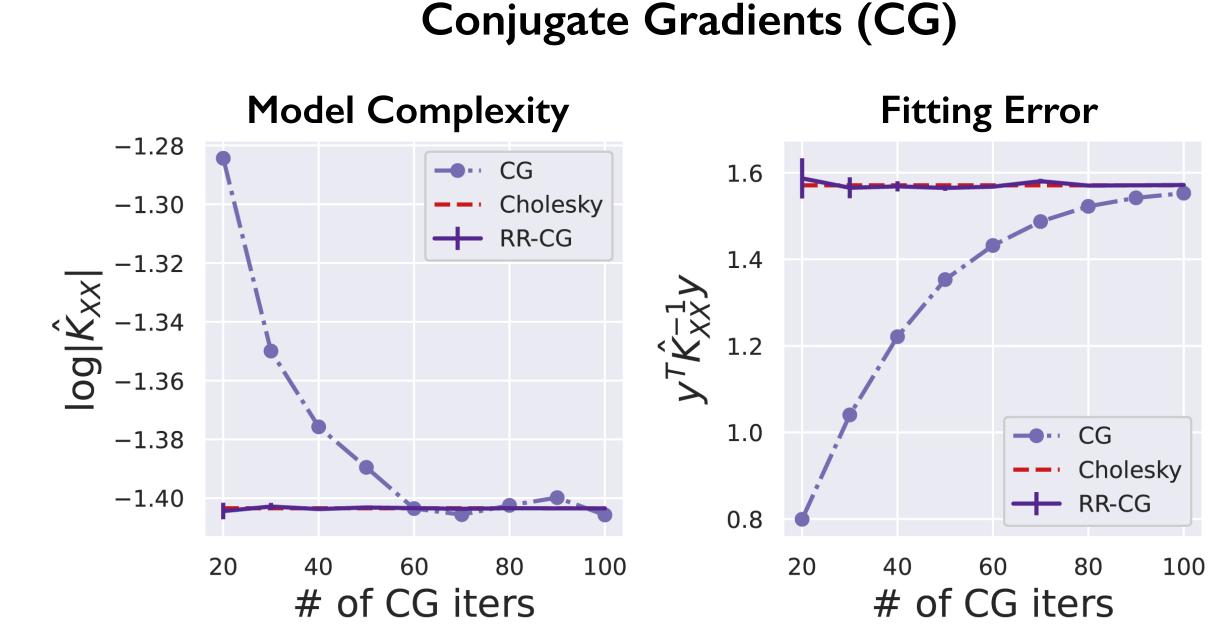
Our method: Bias elimination via randomized truncation

Loss = model complexity +



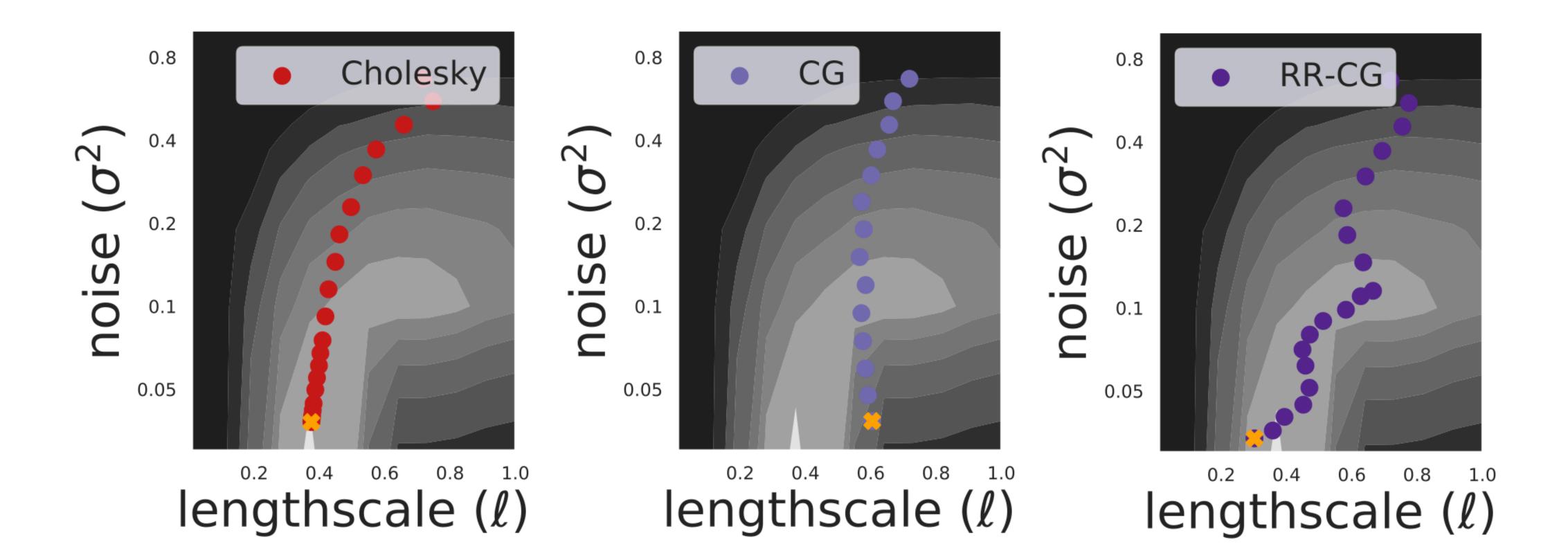
Single Sample RFF

fitting error



Russian Roulette CG

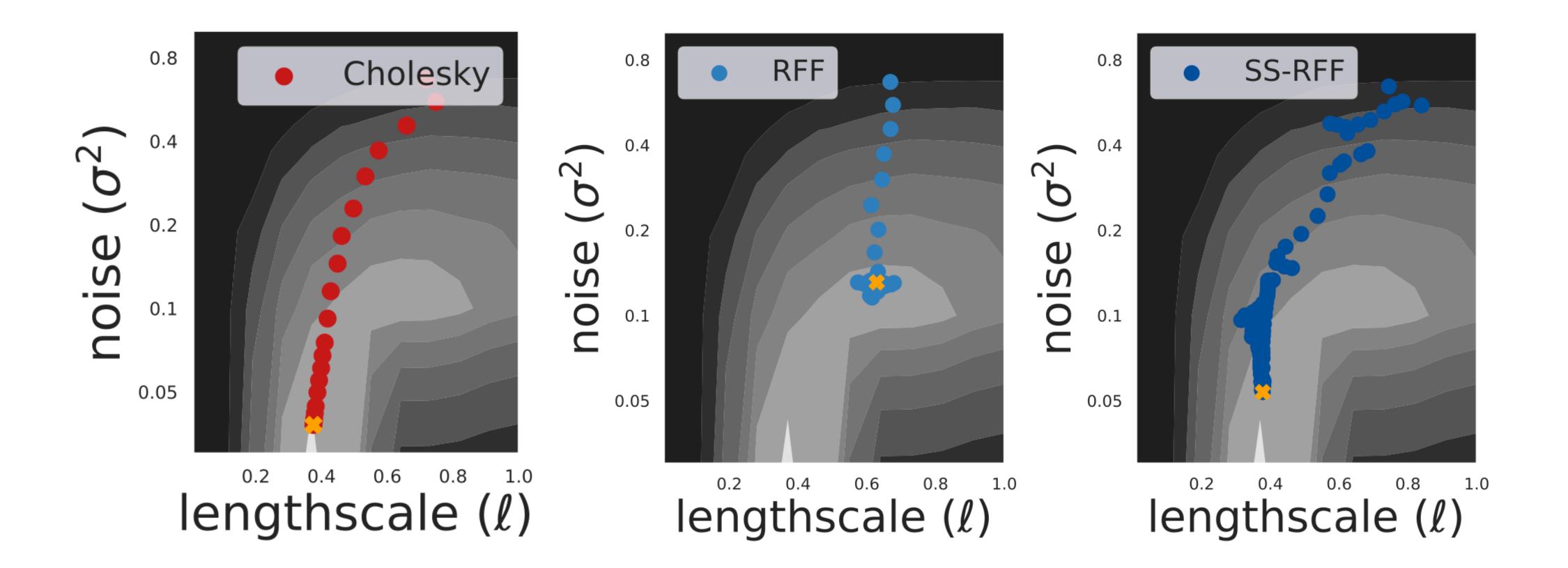
RR-CG achieves superior loss values



state-of-the-art performance on large-scale datasets with $\mathcal{O}(N^2)$ computation

-	1.	0	4
_	0.	9	6
-	0.	8	8
-	0.	8	0
-	0.	7	2
-	0.	6	4
-	0.	5	6
_	0.	4	8
_	0.	4	0

SS-RFF achieves superior loss values



slow convergence on large-scale datasets due to auxiliary variance

-	1.	0	4
_	0.	9	6
-	0.	8	8
-	0.	8	0
-	0.	7	2
-	0.	6	4
-	0.	5	6
_	0.	4	8
_	0.	4	0

What did we discover?

proving systematic biases in scalable GPs

https://github.com/cunningham-lab/RTGPS

