

via Sparse Label Encoding

Multi-Dimensional Classification

Bin-Bin Jia Min-Ling Zhang

School of Computer Science and Engineering,

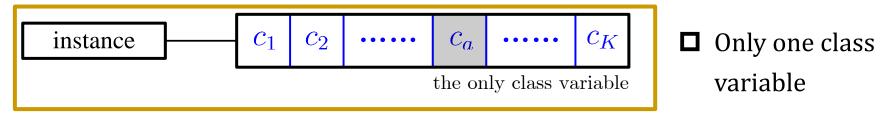
MOE Key Laboratory of Computer Network & Information Integration

Southeast University, China

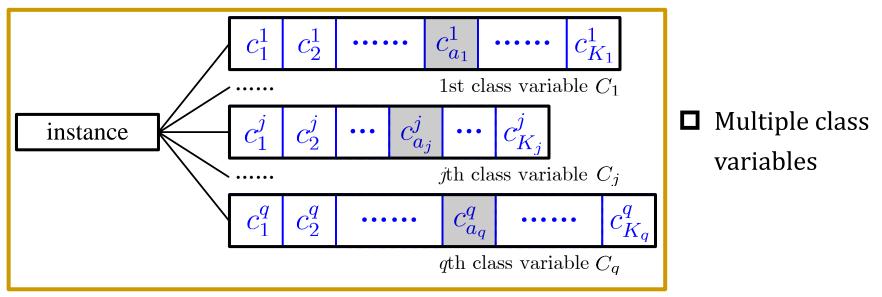
Virtual Event

Multi-Dimensional Classification

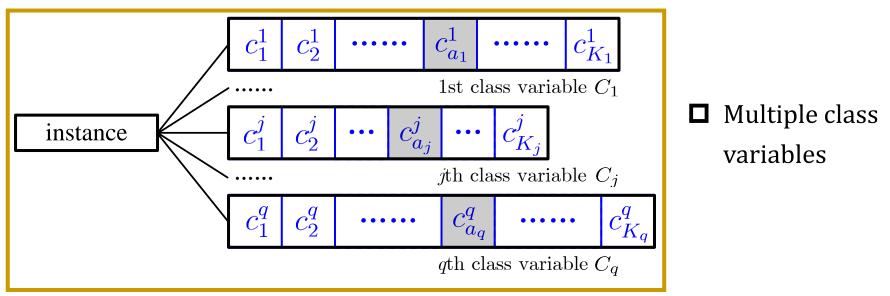
Traditional Multi-class classification



Multi-Dimensional Classification (MDC)



The Problem



Existing works: learn the predictive model **in the original output space** for MDC where the dependencies among class variables are considered.

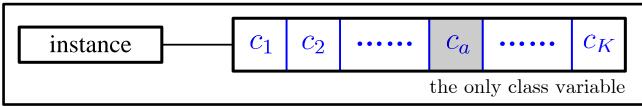
Our work: make a first attempt to learn the predictive model **in its transformed label space** for MDC.

Outline

Introduction

- The proposed SLEM Approach
- Experiments
 - Experimental setup
 - Experimental results
- Conclusion

Multi-Class Classification (MCC)



Input Space

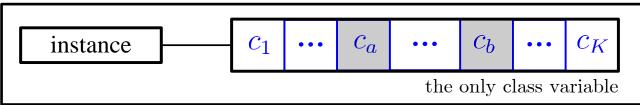
represented by a single instance characterizing its properties

Output Space

associated with a single class variable characterizing its semantics

Only one label in the single class space is relevant.

Multi-Label Classification (MLC)



Input Space

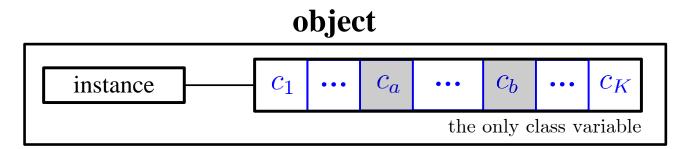
represented by a single instance characterizing its properties

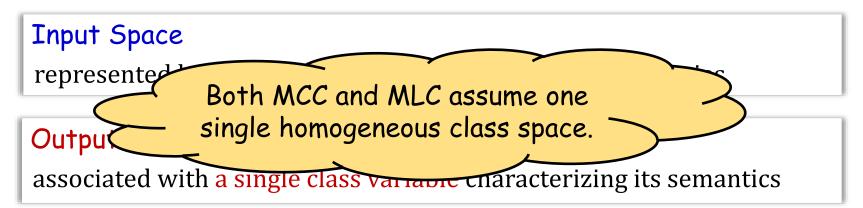
Output Space

associated with a single class variable characterizing its semantics

Multiple labels in the single class space are relevant.

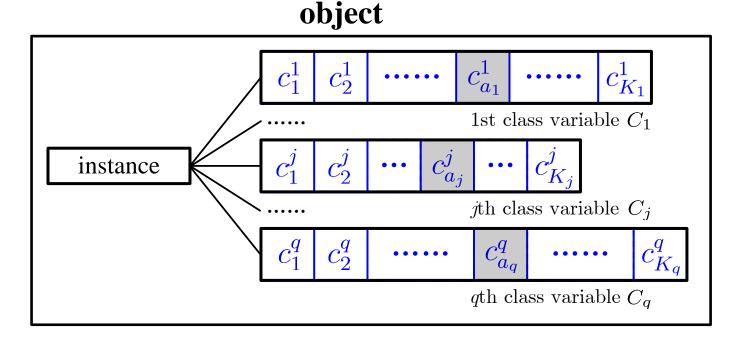
Multi-Label Classification (MLC)





Multiple labels in the single class space are relevant.

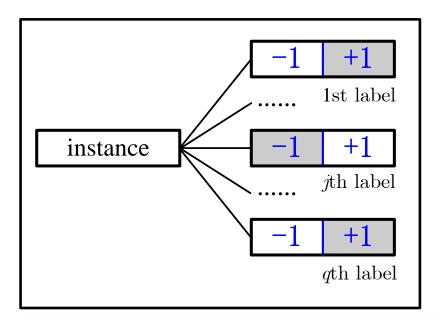
Multi-Dimensional Classification



Multiple labels are relevant with each of them from one heterogeneous class space.

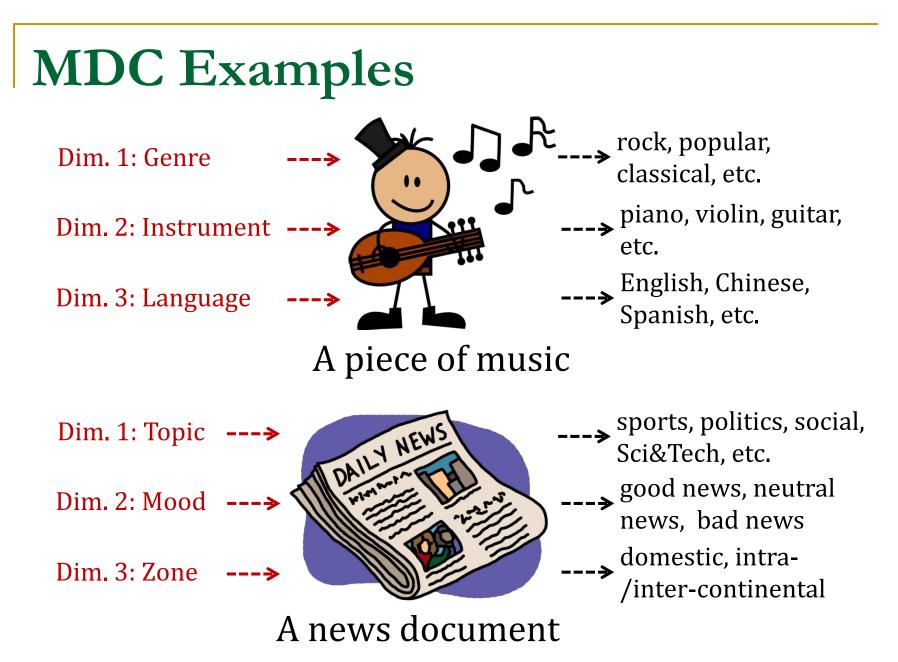
What's More...

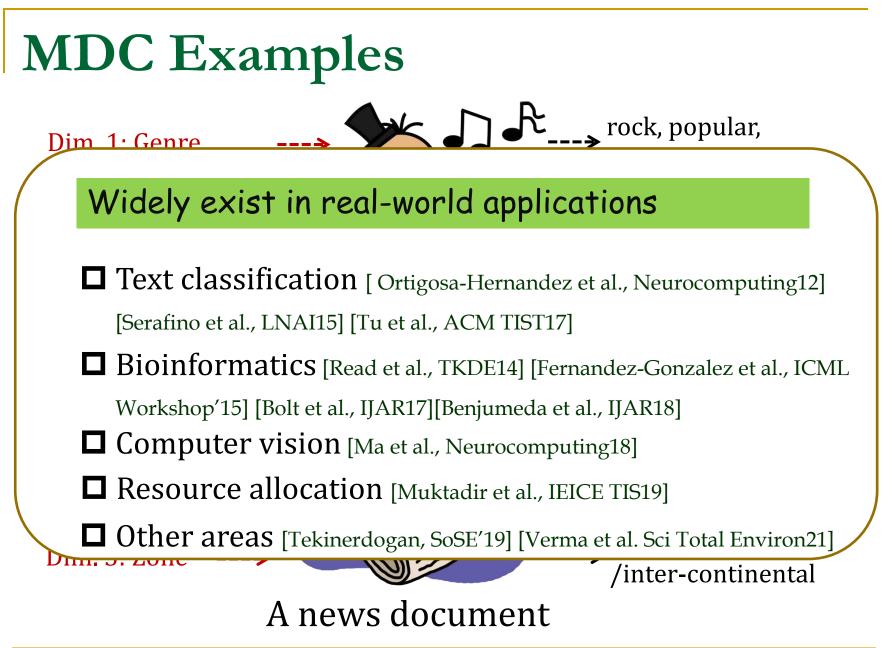
Mathematical view of multi-label classification:



MLC's output space can be regarded as multiple **binary** class variables similar to MDC. But conceptually, they are all in the same class space.

Key difference between MDC and MLC MDC usually assumes *heterogeneous* semantic spaces MLC usually assumes *homogeneous* semantic space





Existing Approaches

Intuitive strategies:

- Binary Relevance (BR): training an independent multi-class classifier w.r.t. each class space
- Class Powerset (CP): training a single multi-class classifier by conducting powset transformation

Other specifically designed approaches:

- Specifying chaining order over class variables [Zaragoza et al., IJCAI'11; Read et al., Pattern Recognition14]
- □ Partitioning class variables into groups [Read et al., TKDE14]
- □ Assuming DAG structure over class variables [Bolt & van der

Gaag, IJAR17; Benjumeda et al., IJAR18; Gil-Begue et al., Artif. Intell. Rev.21]

Existing Approaches

Intuitive strategies:

Binary Relevance (BR): training an independent multi-class classifier w.r.t. each class space

in the original output space !!!-

Other specifically designed approaches:

 Specifying chaining order IJCAI'11; Read et al., Pattern Reck
 Partitioning class variables
 Assuming DAG structure over class variables [Bolt & van der

Gaag, IJAR17; Benjumeda et al., IJAR18; Gil-Begue et al., Artif. Intell. Rev.21]

Bin-Bin Jia, Min-Ling Zhang. ICML'21, Virtual Event

ulti-class classifier

Outline

Introduction

The proposed SLEM Approach

- Experiments
 - Experimental setup
 - Experimental results
- Conclusion

Formal Definition of MDC

Settings

 $\mathcal{X} = \mathbb{R}^d$: d-dimensional input (feature) space

$$\mathcal{Y} = C_1 \times C_2 \times \cdots \times C_q$$
, where $C_j = \{c_1^j, c_2^j, \dots, c_{K_j}^j\}$

: output space which corresponds to the Cartesian product of q class spaces (dim.)

$$\mathcal{D} = \{(\boldsymbol{x}_i, \boldsymbol{y}_i) \mid 1 \leq i \leq m\}$$
: training data set, where
 $\boldsymbol{x}_i = [x_{i1}, x_{i2}, \dots, x_{id}]^\top \in \mathcal{X}$
 $\boldsymbol{y}_i = [y_{i1}, y_{i2}, \dots, y_{iq}]^\top \in \mathcal{Y}$

Outputs

f: multi-dimensional classifier $\mathcal{X} \to \mathcal{Y}$

Formal Definition of MDC

Settings

 $\mathcal{X} = \mathbb{R}^d$: d-dimensional input (feature) space

 $\mathcal{V} = C_1 \times C_2 \times \cdots \times C_n$ where $C_i = \int c^j c^j c^j c^j$

General MDC approaches

Induce the MDC model *in the original output space*

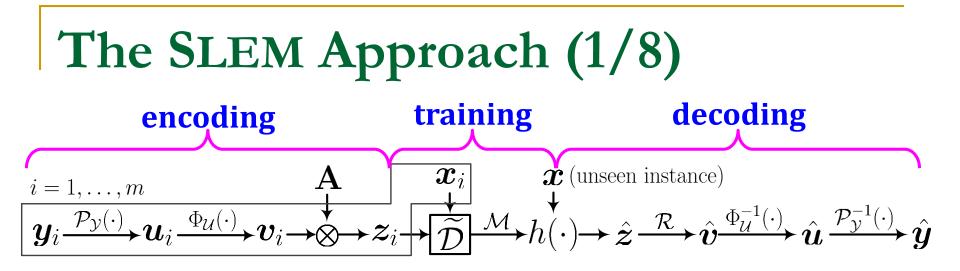
Our SLEM approach

Induce the MDC model *in the transformed output space*

$$\boldsymbol{y}_i = [y_{i1}, y_{i2}, \dots, y_{iq}]^\top \in \mathcal{Y}$$

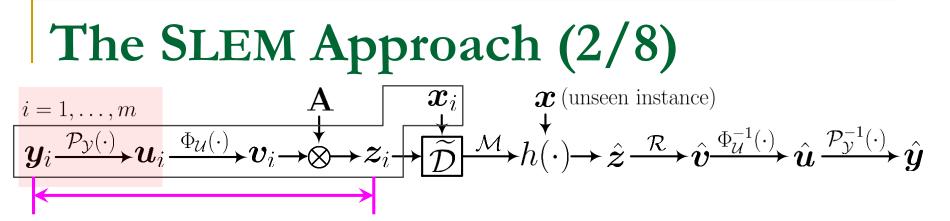
Outputs

f : multi-dimensional classifier $\mathcal{X} \to \mathcal{Y}$



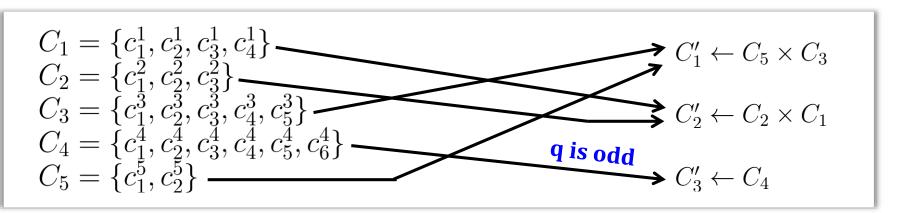
SLEM works in an *encoding-training-decoding* framework:

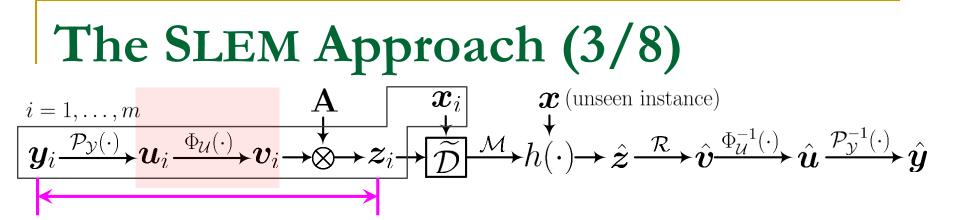
- □ In encoding phase, the categorical class vector y_i is transformed into a real-valued label vector z_i .
- \blacksquare In training phase, a multi-output regression model $h(\cdot)$ is induced in the encoded label space.
- □ In decoding phase, the predicted class vector \hat{y} for unseen instance x is determined by conducting inverse operations in encoding phase based on h(x).



D Pairwise grouping: $\mathcal{Y} = C_1 \times \cdots \times C_q \Rightarrow \mathcal{U} = C'_1 \times \cdots \times C'_{\lceil \frac{q}{2} \rceil}$

- Make the results of one-hot conversion in next step sparser.
- Group q class spaces into $\lfloor \frac{q}{2} \rfloor$ pairs (plus a singleton one if q is odd) according to the number of class labels in each class space.



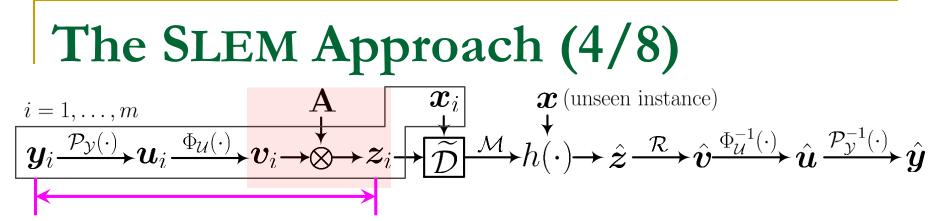


One-hot conversion: Categorical space $\mathcal{U} \Rightarrow$ Binary $\{0,1\}$ space

- Facilitate the following numeric computations.
- Convert each class label in categorical class vector \boldsymbol{u}_i into its one-hot form and then concatenate them together.

$$C'_{1} = \{a, b, c, d\}, C'_{2} = \{I, II, III, IV, V, VI\}, C'_{3} = \{\alpha, \beta, \gamma\} \quad (k = 3)$$
$$u_{i} = [b, III, \gamma]^{\top} \Rightarrow v_{i} = [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1]^{\top} \quad (k\text{-sparse})$$

Local sparsity: there is one and only one '1' among each local group



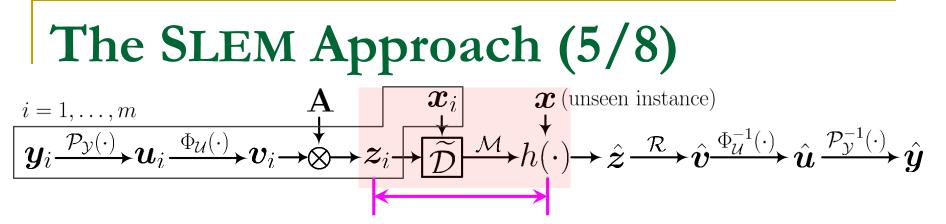
□ Sparse linear encoding: Binary $\{0,1\}$ space \Rightarrow Real-valued space

- Blend the heterogeneous class spaces into an integrated one.
- Encode binary label vector \boldsymbol{v}_i into real-valued vector \boldsymbol{z}_i with matrix \mathbf{A} which satisfies k-RIP (i.e., $\boldsymbol{z}_i = \mathbf{A}\boldsymbol{v}_i$):

Definition 1. For matrix **A**, if there is a constant $\delta_k \in [0, 1)$ which satisfies

$$(1 - \delta_k) \| \boldsymbol{v} \|_2^2 \le \| \mathbf{A} \boldsymbol{v} \|_2^2 \le (1 + \delta_k) \| \boldsymbol{v} \|_2^2$$

where \boldsymbol{v} is any k-sparse vector, then \mathbf{A} is known as satisfying k-order Restricted Isometry Property (k-RIP) (e.g., Gaussian matrix and Bernoulli matrix).

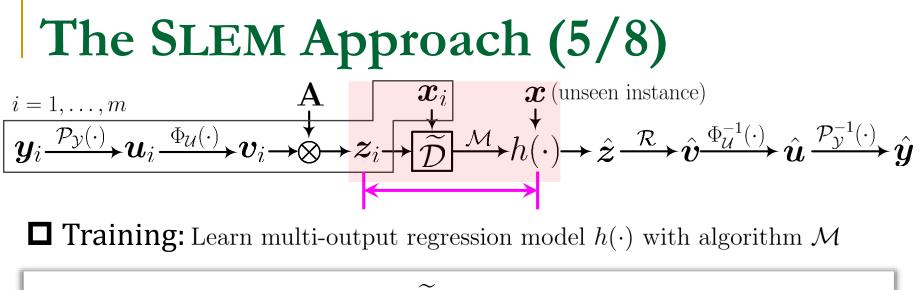


Training: Learn multi-output regression model $h(\cdot)$ with algorithm \mathcal{M}

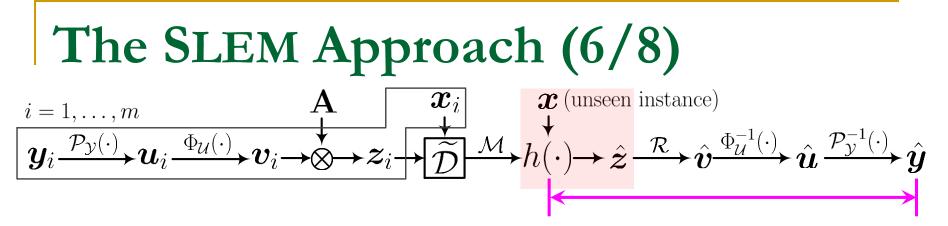
- Train predictive model over $\widetilde{\mathcal{D}} = \{(\boldsymbol{x}_i, \boldsymbol{z}_i) \mid 1 \leq i \leq m\}.$
- Learn multi-output regression model $h(\boldsymbol{x}) = \mathbf{W}^{\top}\boldsymbol{x} + \boldsymbol{b}$ via optimizing the following formulation:

$$\min_{\mathbf{W}, \boldsymbol{b}, \hat{\mathbf{V}}} \frac{1}{2} \|\mathbf{W}\|_{F}^{2} + \lambda \sum_{i=1}^{m} \left[\|h(\boldsymbol{x}_{i}) - \boldsymbol{z}_{i}\|_{2}^{2} + \gamma_{1} \left(\|h(\boldsymbol{x}_{i}) - \mathbf{A}\hat{\boldsymbol{v}}_{i}\|_{2}^{2} + \gamma_{2} \|\hat{\boldsymbol{v}}_{i} - \boldsymbol{v}_{i}\|_{1} \right) \right]$$

Here, $\mathbf{W} = [\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_{s'}] \in \mathbb{R}^{d \times s'}$ and $\boldsymbol{b} = [b_1, b_2, \dots, b_{s'}]^{\top}$ are the model parameters of h to be determined, $\hat{\mathbf{V}} = [\hat{\boldsymbol{v}}_1, \dots, \hat{\boldsymbol{v}}_m]^{\top} \in \mathbb{R}^{m \times s}$ with $\hat{\boldsymbol{v}}_i$ corresponding to the recovered sparse vector for \boldsymbol{v}_i based on its prediction $h(\boldsymbol{x}_i)$, and λ , γ_1 and γ_2 are three trade-off parameters.



• Train predictive model over
$$\mathcal{D} = \{(\boldsymbol{x}_i, \boldsymbol{z}_i) \mid 1 \le i \le m\}$$
.
• **regularizer** in **Square loss** in **Facilitate sparse reconstruction**
mizh the following form ation:
 $\min_{\mathbf{W}, \boldsymbol{b}, \hat{\mathbf{V}}} \frac{1}{2} \|\mathbf{W}\|_F^2 \rightarrow \lambda \sum_{i=1}^m (\|h(\boldsymbol{x}_i) - \boldsymbol{z}_i\|_2^2 + \gamma_1 (\|h(\boldsymbol{x}_i) - \mathbf{A}\hat{\boldsymbol{v}}_i\|_2^2 + \gamma_2 \|\hat{\boldsymbol{v}}_i - \boldsymbol{v}_i\|_1))$
Here, $\mathbf{W} = [\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_{s'}] \in \mathbb{R}^{d \times s'}$ and $\boldsymbol{b} = [b_1, b_2, \dots, b_{s'}]^{\top}$ are the model parameters of h to be determined, $\hat{\mathbf{V}} = [\hat{\boldsymbol{v}}_1, \dots, \hat{\boldsymbol{v}}_m]^{\top} \in \mathbb{R}^{m \times s}$ with $\hat{\boldsymbol{v}}_i$ corresponding to the recovered sparse vector for \boldsymbol{v}_i based on its prediction $h(\boldsymbol{x}_i)$, and λ , γ_1 and γ_2 are three trade-off parameters.

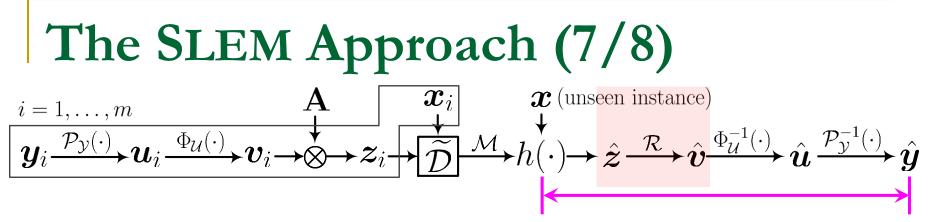


Testing: Obtain the real-valued prediction $\hat{z} = h(x)$ for unseen instance xSuppose that y is the ground-truth class vector of x, then $\hat{z} = h(x)$ should correspond to the prediction of z:

$$y \xrightarrow{\mathcal{P}_{\mathcal{Y}}(\cdot)} u \xrightarrow{\Phi_{\mathcal{U}}(\cdot)} v \xrightarrow{\mathbf{A}} z$$

The decoding phase corresponds to the inverse operations of encoding phase to obtain \boldsymbol{x} 's predicted class vector $\hat{\boldsymbol{y}}$ based on $\hat{\boldsymbol{z}}$.

Note that \boldsymbol{v} is k-sparse, and there is one and only one '1' in each local group (i.e., local sparsity).



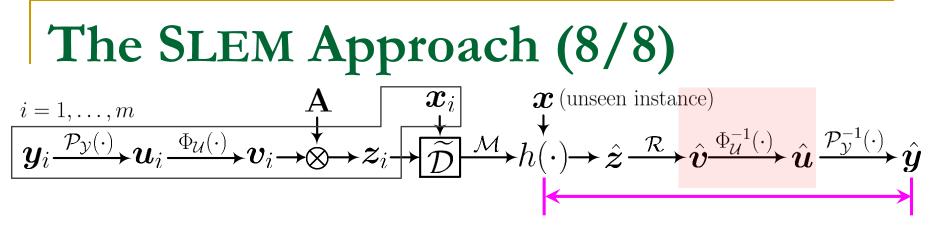
□ Inverse of sparse label encoding

- Complete sparse reconstruction and keep local sparsity.
- Adapt the well-known orthogonal matching pursuit (OMP) algorithm to consider the local sparsity property.

The OMP algorithm recovers a k-sparse vector by choosing the column of **A** that is most strongly correlated with the residual at each iteration and repeating this procedure k times.

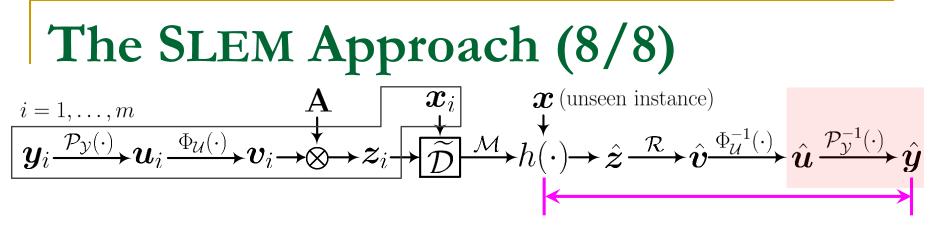
Our key adaption is to set the related columns to zero which belong to the same local group with the current selected column of \mathbf{A} .

	Algorithm 2 LOMP: $v = \mathcal{R}(z, \mathbf{A}, k, \mathcal{I})$	
The S	Input: The encoding matrix $\mathbf{A} \in \mathbb{R}^{s' \times s}$, the real-valued	
	vector $z \in \mathbb{R}^{s'}$, sparsity level k, local sparsity informa-	
$i = 1, \ldots, m$	tion $\mathcal{I}: s_1, s_2, \ldots, s_k;$	
$\mathcal{P}_{\mathcal{V}}(\cdot)$	tion $\mathcal{I} : s_1, s_2, \dots, s_k$; Output: The recovered k-sparse vector v ; 1: Initialize v as zero vector with length $s = \sum_{i=1}^k s_i$;) $\wedge \mathcal{P}_{\mathcal{V}}^{-1}(\cdot) \wedge$
$y_i u_i \cdot$	1: Initialize v as zero vector with length $s = \sum_{i=1}^{k} s_i$;	$\rightarrow u \xrightarrow{\hspace{1.5pt}} y$
	Output: The recovered k-sparse vector v ; 1: Initialize v as zero vector with length $s = \sum_{j=1}^{k} s_j$; 2: Initialize $r_0 = z$, $J = \emptyset$, $\mathbf{B} = \mathbf{A}$;	
	3. for $i = 1$ to k do	
Inverse	4: $j_* = \arg \max_i \langle \boldsymbol{r}_{i-1}, \boldsymbol{B}_{i} \rangle ;$	
	$5 \cdot a(a) - 1$	
• Complet	6: $I = I \cup \{i_i\}$	
• Adapt th	7: $\mathbf{r}_i = \mathbf{z} - \mathbf{A}_{:J} (\mathbf{A}_{:J}^\top \mathbf{A}_{:J})^{-1} \mathbf{A}_{:J}^\top \mathbf{z};$ 8: for $\kappa = 1$ to k do	P) algo-
rithm to c	8: for $\kappa = 1$ to k do	
	9: $t_f = \sum_{t=1}^{\kappa} s_t;$	
	10. if $i \leq t$, then	
The OMP	11:	sing the
column of	12: $T = \{t_b + 1, t_b + 2, \dots, t_f\};$	sidual at
each iterat	12. $I = \{t_b + 1, t_b + 2, \dots, t_f\},$ 13: $\mathbf{B}_{T} = 0;$	
Our key ac	14: break;	h belong
to the sam	15: end if	of \mathbf{A} .
	16: end for	J
	17: end for	
BIN-BIN JIA, I	18: Return v.	



Inverse of one-hot conversion

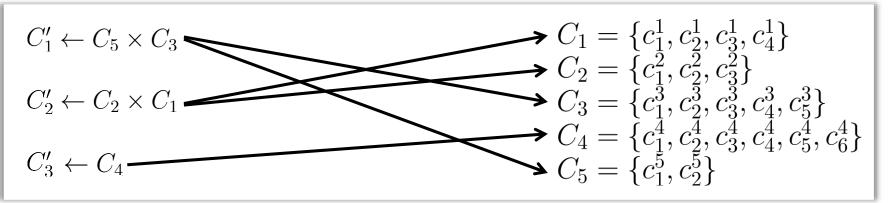
$$C'_{1} = \{a, b, c, d\}, C'_{2} = \{I, II, III, IV, V, VI\}, C'_{3} = \{\alpha, \beta, \gamma\} \quad (k = 3)$$
$$\boldsymbol{v}_{i} = [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1]^{\top} \Rightarrow \boldsymbol{u}_{i} = [b, III, \gamma]^{\top} \quad (k\text{-sparse})$$



Inverse of one-hot conversion

$$C'_{1} = \{a, b, c, d\}, C'_{2} = \{I, II, III, IV, V, VI\}, C'_{3} = \{\alpha, \beta, \gamma\} \quad (k = 3)$$
$$\boldsymbol{v}_{i} = [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1]^{\top} \Rightarrow \boldsymbol{u}_{i} = [b, III, \gamma]^{\top} \quad (k\text{-sparse})$$

□ Inverse of pairwise grouping



Outline

- Introduction
- The proposed SLEM Approach
- Experiments
 - Experimental setup
 - Experimental results
- Conclusion

Experimental Setup

Experimental data sets

Characteristics of the experimental MDC data sets.

Data Set	#Exam.	#Dim.	#Labels/Dim.	#Features†
Jura	359	2	$4,\!5$	9n
Oes10	403	16	3	298n
Voice	3136	2	$4,\!2$	19n
Scm 20d	8966	16	4	61n
Rf1	8987	8	$4,\!4,\!3,\!4,\!4,\!3,\!4,\!3$	64n
Scm1d	9803	16	4	280n
CoIL2000	9822	5	$6,\!10,\!10,\!4,\!2$	81x
Flickr	12198	5	$3,\!4,\!3,\!4,\!4$	1536n
Disfa	13095	12	5, 5, 6, 3, 4, 4, 5, 4, 4, 4, 6, 4	136n
Fera	14052	5	6	136n
Adult	18419	4	7, 7, 5, 2	5n,5x

 $\dagger n, x$ denote numeric and nominal features respectively.

Experimental Setup

Evaluation Metrics

Testing set: $S = \{(x_i, y_i) \mid 1 \le i \le p\}, \text{ where } y_i = [y_{i1}, y_{i2}, \dots, y_{iq}]^\top$ $\hat{y}_i = f(x_i) = [\hat{y}_{i1}, \hat{y}_{i2}, \dots, \hat{y}_{iq}]^\top$ Predicted class vector: $(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}): r^{(i)} = \sum_{j=1}^{q} [\![y_{ij} = \hat{y}_{ij}]\!]$ For each MDC test example $\operatorname{HS}_{\mathcal{S}}(f) = \frac{1}{p} \sum_{i=1}^{P} \frac{1}{q} \cdot r^{(i)}$ Hamming Score: $\mathrm{EM}_{\mathcal{S}}(f) = \frac{1}{p} \sum_{i=1}^{p} \llbracket r^{(i)} = q \rrbracket$ Exact Match: $\operatorname{SEM}_{\mathcal{S}}(f) = \frac{1}{p} \sum_{i=1}^{p} \llbracket r^{(i)} \ge q - 1 \rrbracket$ Sub-Exact Match:

Experimental Setup

Compared Algorithms

- **BR:** Learn *q* independent multi-class classifier, one per dimension
- **CP:** Learn a single multi-class classifier via powerset transformation
- **BCC:** Learn *q* chain-structured multi-class classifiers, one per dimension
- **ESC:** Group the class variables into groups
- **gMML:** Learn a regressor for each class label as well as a Mahalanobis distance metric to train all regressor in a joint manner

Experimental Protocol

Ten-fold cross-validation + Pairwise *t*-test

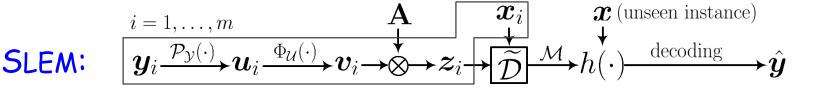
Experimental Results

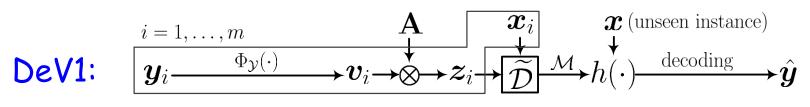
Win/tie/loss counts of pairwise t-test (at 0.05 significance level) between SLEM and each MDC approach.

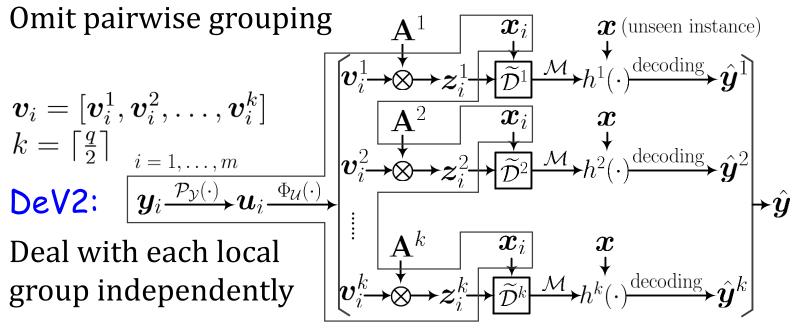
Evaluation	SLEM against				
metric	BR	CP	BCC	ESC	gMML
HS	9/1/1	7/0/0	10/1/0	8/0/0	8/0/3
EM	10/1/0	5/2/0	10/1/0	7/1/0	9/1/1
SEM	7/2/2	5/1/1	8/2/1	6/1/1	5/4/2
In Total	26/4/3	17/3/1	28/4/1	21/2/1	22/5/6

Among all the 144 configurations, SLEM achieves superior or at least comparable performance against the five compared approaches in 132 cases.

Further Analysis (1/2)







Further Analysis (2/2)

Wilcoxon signed-ranks test for SLEM against its two degenerated versions in terms of each evaluation metric (significance level $\alpha = 0.05$; *p*-values shown in the brackets).

SLEM	Evaluation metric		
versus	HS	EM	SEM
DeV1	win [9.77e-04]	win[9.77e-04]	win [9.77e-04]
DeV2	win[3.91e-03]	win[3.91e-03]	win[3.91e-03]

- The superiority of SLEM against DeV1 shows the benefits of the pairwise grouping operation.
- The superiority of SLEM against DeV2 shows the benefits of encoding the heterogeneous class spaces into an integrated one.

Outline

- Introduction
- The proposed SLEM Approach
- Experiments
 - Experimental setup
 - Experimental results
- Conclusion

Conclusion

- Different from most existing MDC approaches, we propose a first attempt towards learning predictive models in the transformed label space instead of the original one.
- We design a novel MDC approach named SLEM which works in an *encoding-training-decoding* framework by utilizing the sparse property of the transformed label space.
- Experimental results clearly validate the superiority of SLEM against state-of-the-art MDC approaches.

Thanks !

http://palm.seu.edu.cn/zhangml/files/SLEM.rar

Email: jiabb@seu.edu.cn

