

ICML | 2021

Sharing Less is More: Lifelong Learning in Deep Networks with Selective Layer Transfer

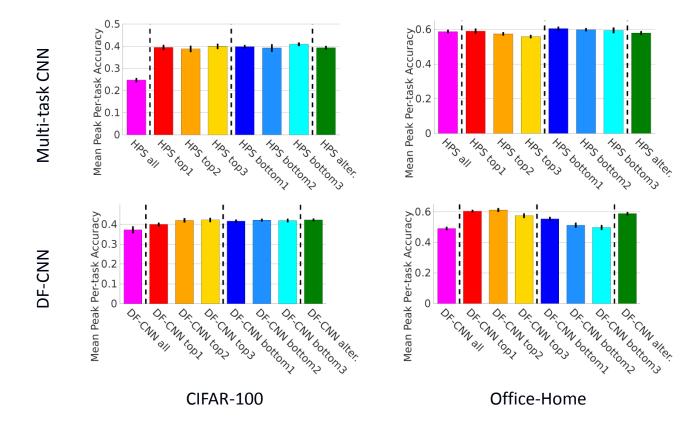
Seungwon Lee Univ. of Pennsylvania Sima Behpour Carnegie Mellon Univ. Eric Eaton Univ. of Pennsylvania

Correspondence: {leeswon, eeaton}@seas.upenn.edu

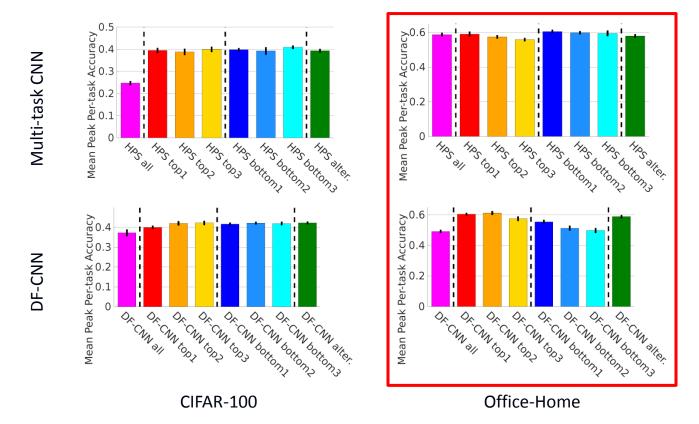
International Conference on Machine Learning 2021

- Lifelong/continual ML aims to continually learn, maintain, and reuse knowledge across multiple, consecutive tasks
- Previous work has mainly focused on:
 - Architecture (what / how to transfer)
 - Task relationships (when to transfer)
- Less attention has been given to the granularity of knowledge to transfer (<u>where</u> to transfer)
 - Branching task models in a tree structure
 - Introducing a new learning module per layer between tasks

A simple experiment: evaluation of different architectures



A simple experiment: evaluation of different architectures

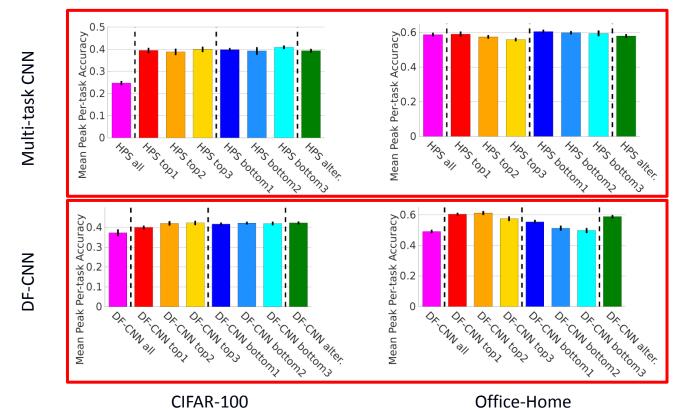


The optimal transfer configuration varies according to both the architecture and the task relationships

Lee, Behpour, & Eaton

Sharing Less is More: Lifelong Learning in Deep Networks with Selective Layer Transfer

A simple experiment: evaluation of different architectures



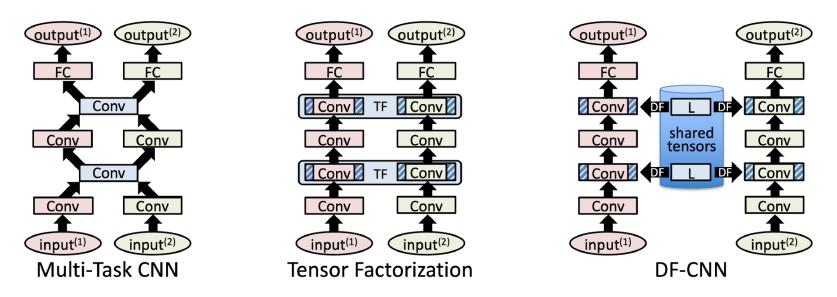
The optimal transfer configuration varies according to both the architecture and the task relationships

Lee, Behpour, & Eaton

Sharing Less is More: Lifelong Learning in Deep Networks with Selective Layer Transfer

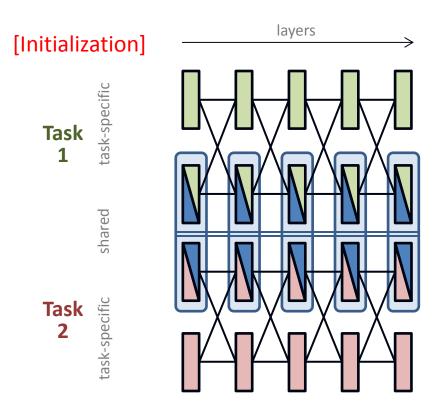
Lifelong Architecture Search

- Difficulties of lifelong architecture search:
 - Size of search space ($T \cdot 2^d$ configurations for *d*-layer network and *T* tasks)
 - Dependency on the training of network parameters

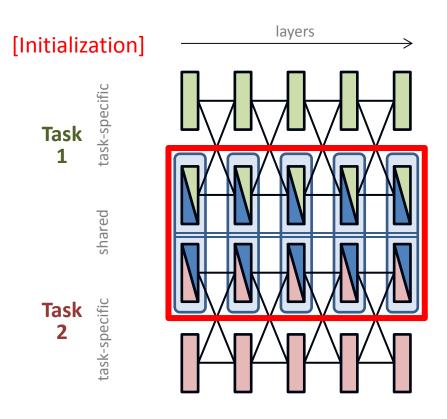


Example of an *alternating* transfer configuration for three different learning architectures

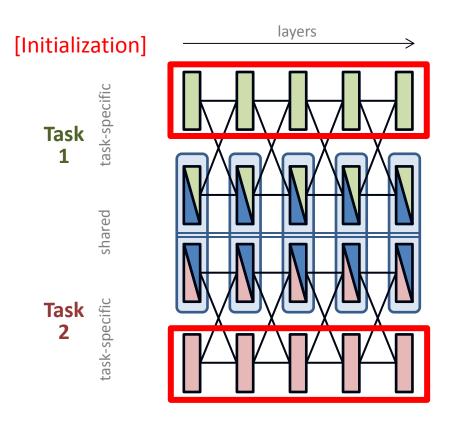
- Lifelong Architecture Search via EM algorithm
 - For each new task, initialize transfer-based parameters $\theta_s^{(l)}$ and task-specific parameters $\theta_t^{(l)}$ for layers $l = 1, 2, \cdots, d$



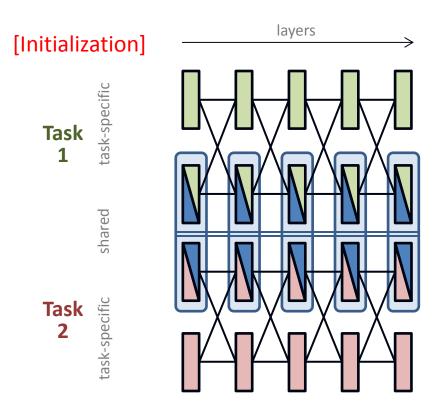
- Lifelong Architecture Search via EM algorithm
 - For each new task, initialize transfer-based parameters $\theta_s^{(l)}$ and task-specific parameters $\theta_t^{(l)}$ for layers $l = 1, 2, \cdots, d$



- Lifelong Architecture Search via EM algorithm
 - For each new task, initialize transfer-based parameters $\theta_s^{(l)}$ and task-specific parameters $\theta_t^{(l)}$ for layers $l = 1, 2, \cdots, d$



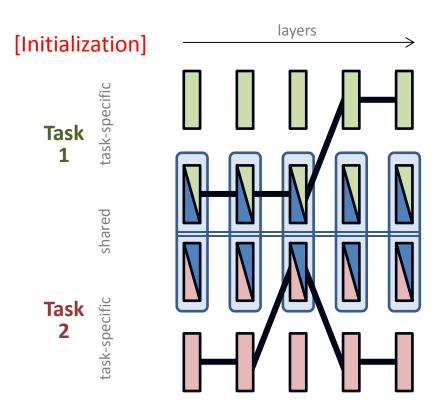
- Lifelong Architecture Search via EM algorithm
 - For each new task, initialize transfer-based parameters $\theta_s^{(l)}$ and task-specific parameters $\theta_t^{(l)}$ for layers $l = 1, 2, \cdots, d$



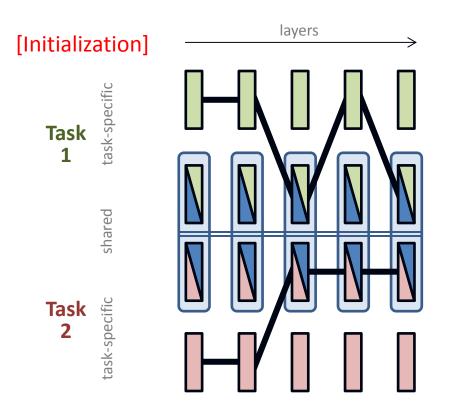
- Lifelong Architecture Search via EM algorithm
 - For each new task, initialize transfer-based parameters $\theta_s^{(l)}$ and task-specific parameters $\theta_t^{(l)}$ for layers $l = 1, 2, \cdots, d$



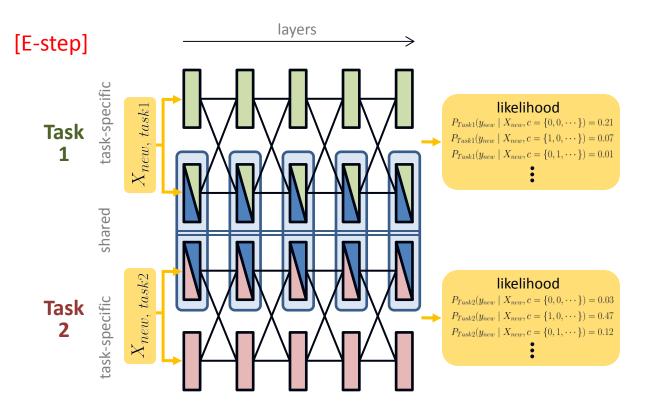
- Lifelong Architecture Search via EM algorithm
 - For each new task, initialize transfer-based parameters $\theta_s^{(l)}$ and task-specific parameters $\theta_t^{(l)}$ for layers $l = 1, 2, \cdots, d$



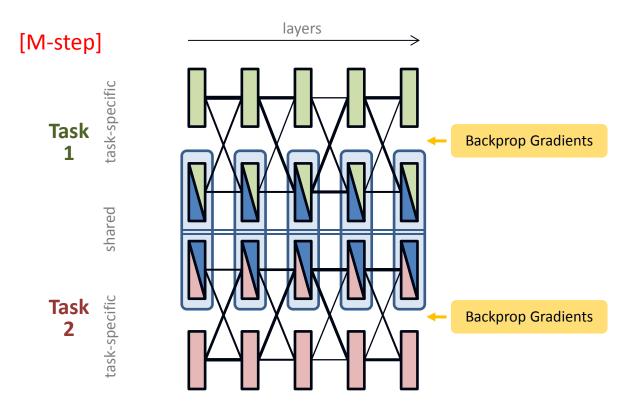
- Lifelong Architecture Search via EM algorithm
 - For each new task, initialize transfer-based parameters $\theta_s^{(l)}$ and task-specific parameters $\theta_t^{(l)}$ for layers $l = 1, 2, \cdots, d$



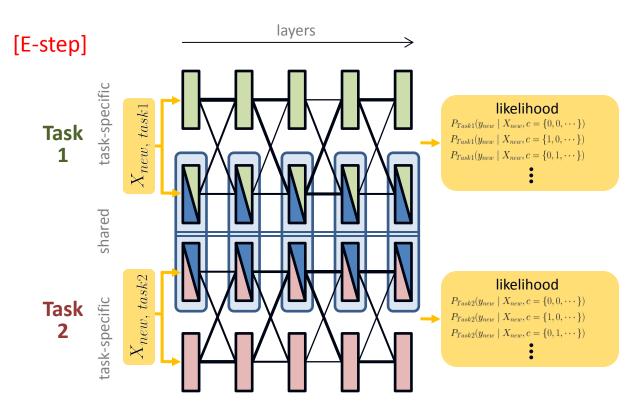
- Lifelong Architecture Search via EM algorithm
 - For each new task, initialize transfer-based parameters $\theta_s^{(l)}$ and task-specific parameters $\theta_t^{(l)}$ for layers $l = 1, 2, \cdots, d$



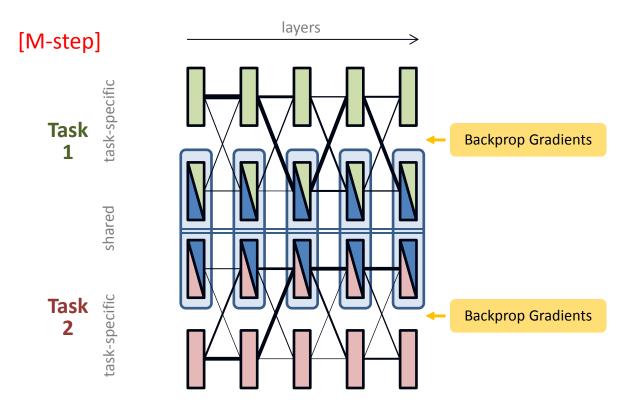
- Lifelong Architecture Search via EM algorithm
 - For each new task, initialize transfer-based parameters $\theta_s^{(l)}$ and task-specific parameters $\theta_t^{(l)}$ for layers $l = 1, 2, \cdots, d$



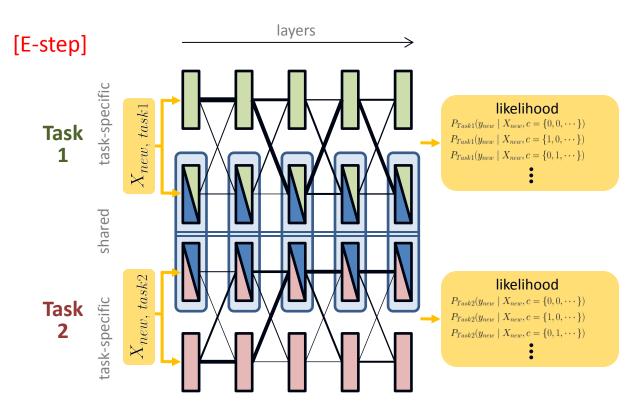
- Lifelong Architecture Search via EM algorithm
 - For each new task, initialize transfer-based parameters $\theta_s^{(l)}$ and task-specific parameters $\theta_t^{(l)}$ for layers $l = 1, 2, \cdots, d$



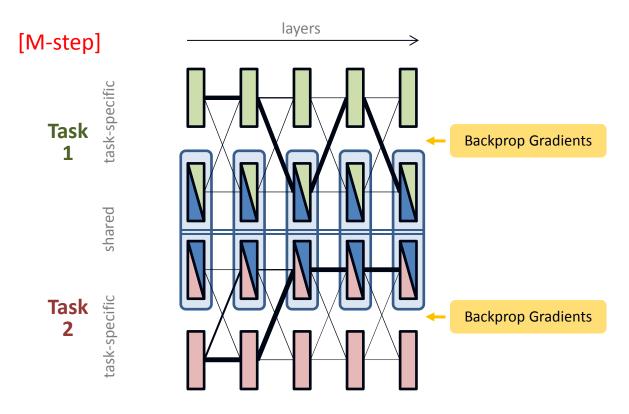
- Lifelong Architecture Search via EM algorithm
 - For each new task, initialize transfer-based parameters $\theta_s^{(l)}$ and task-specific parameters $\theta_t^{(l)}$ for layers $l = 1, 2, \cdots, d$



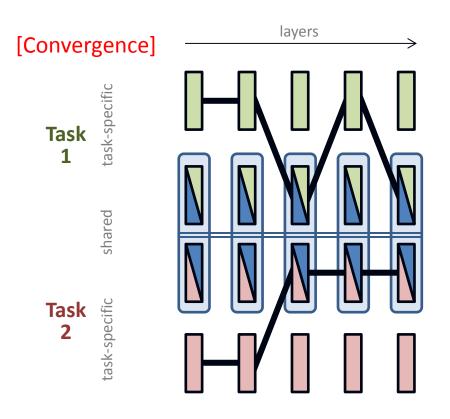
- Lifelong Architecture Search via EM algorithm
 - For each new task, initialize transfer-based parameters $\theta_s^{(l)}$ and task-specific parameters $\theta_t^{(l)}$ for layers $l = 1, 2, \cdots, d$



- Lifelong Architecture Search via EM algorithm
 - For each new task, initialize transfer-based parameters $\theta_s^{(l)}$ and task-specific parameters $\theta_t^{(l)}$ for layers $l = 1, 2, \cdots, d$



- Lifelong Architecture Search via EM algorithm
 - For each new task, initialize transfer-based parameters $\theta_s^{(l)}$ and task-specific parameters $\theta_t^{(l)}$ for layers $l = 1, 2, \cdots, d$



- Lifelong Architecture Search via EM algorithm
 - For each new task, initialize transfer-based parameters $\theta_s^{(l)}$ and task-specific parameters $\theta_t^{(l)}$ for layers $l = 1, 2, \cdots, d$
 - (E-step) Estimate posterior probability of transfer configurations
 - > prior of configuration $\pi_t(c) = (n_c + 1) / \sum (n_{\tilde{c}} + 1)$

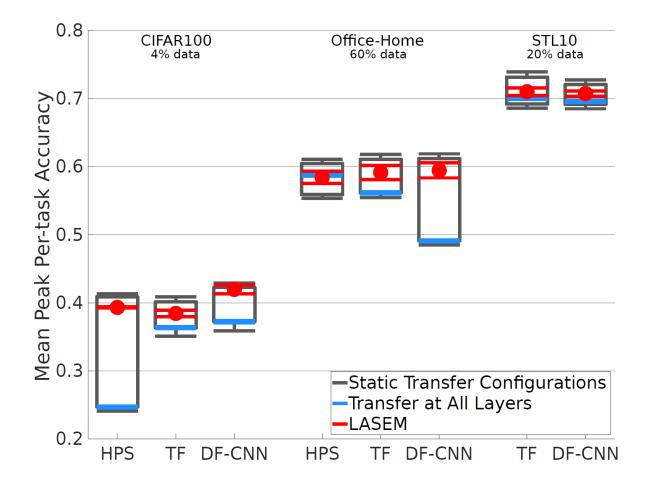
> posterior
$$P(c \mid X_{new}, y_{new}) \propto P(c_{(t)} = \overset{c}{c}) P(y_{new} \mid X_{new}, c)$$

(M-step) Update parameters based on the posterior of configurations

$$\theta_s^{(l)} \leftarrow \theta_s^{(l)} + \lambda \sum_{c \in C: c^{(l)} = 1} P(c \mid \mathcal{D}_{new}) \nabla \log \mathcal{L}(\mathcal{D}_{new} \mid c)$$

$$\theta_t^{(l)} \leftarrow \theta_t^{(l)} + \lambda \sum_{c \in C: c^{(l)} = 0} P(c \mid \mathcal{D}_{new}) \nabla \log \mathcal{L}(\mathcal{D}_{new} \mid c)$$

Evaluation: Peak Per-task Accuracy



LASEM performs toward the upper range of static transfer configurations

Lee, Behpour, & Eaton

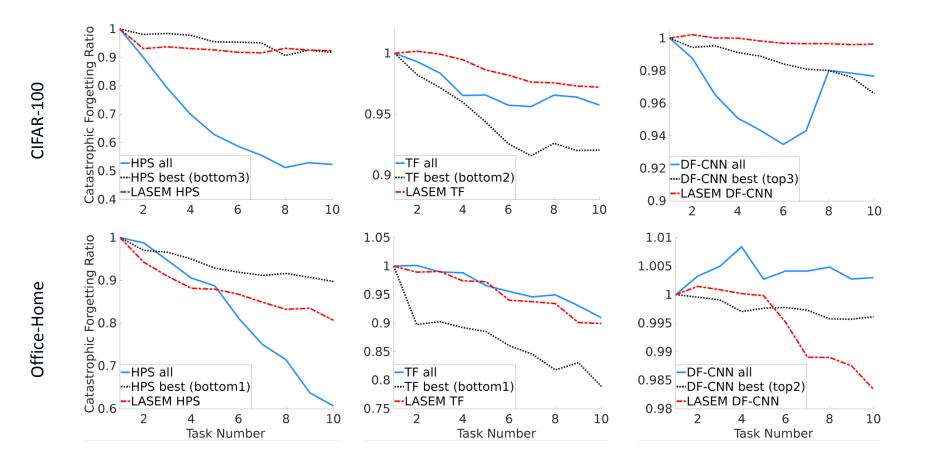
Sharing Less is More: Lifelong Learning in Deep Networks with Selective Layer Transfer

Evaluation: Brute-force Search

Architecture	LASEM	Brute-force Search		Transfer All Layers				
	Accuracy (%)	Accuracy (%)	Relative Time	Accuracy (%)	Relative Time			
CIFAR-100 (10 Tasks)								
HPS	39.3 ± 0.1	40.4 ± 0.3	6.55	24.7 ± 0.6	0.78			
TF	38.4 ± 0.5	39.9 ± 1.1	8.81	36.3 ± 1.0	0.64			
DF-CNN	42.0 ± 0.6	42.6 ± 0.7	9.45	36.3 ± 1.3	0.59			
HPS	58.4 ± 0.9	59.4 ± 0.2	4.72	54.9 ± 0.7	0.72			
TF	59.1 ± 1.0	58.7 ± 0.3	5.22	56.2 ± 0.7	0.66			
DF-CNN	59.5 ± 1.1	58.8 ± 0.3	4.04	49.1 ± 0.6	0.61			

LASEM achieves performance of brute-force search 5x – 10x faster

Evaluation: Catastrophic Forgetting



LASEM forgets previous tasks less due to task-specific transfer

Selective Sharing	Accuracy(%)	Forgetting	Time
Sciective Sharing	Accuracy(70)	Ratio	(k sec)
DEN	48.00 ± 0.60	0.28 ± 0.01	55.9
APD-Net	59.58 ± 0.45	0.83 ± 0.03	21.5
ProgNN	60.03 ± 0.45	1.00 ± 0.00	96.7
DARTS HPS	45.64 ± 1.20	0.70 ± 0.07	43.8
DARTS DF-CNN	56.77 ± 0.49	0.35 ± 0.04	33.2
LASEM HPS	58.44 ± 0.90	0.81 ± 0.08	70.2
LASEM TF	59.14 ± 0.80	0.90 ± 0.04	77.3
LASEM DF-CNN	59.45 ± 1.10	0.98 ± 0.01	83.2

LASEM achieves high accuracy and low forgetting in comparable time

Salaatiya Sharing	Accuracy(%)	Forgetting	Time				
Selective Sharing	Accuracy(%)	Ratio	(k sec)				
CIFAR-100 (10 Tasks)							
ResNet HPS	38.51 ± 0.53	0.54 ± 0.03	4.47				
LASEM ResNet HPS 4G	39.47 ± 0.30	0.79 ± 0.05	11.1				
LASEM ResNet HPS 5G	39.07 ± 1.10	0.79 ± 0.08	14.4				
LASEM ResNet HPS 6G	40.00 ± 0.65	0.75 ± 0.06	25.1				
LASEM ResNet HPS 7G	39.32 ± 0.33	0.74 ± 0.07	46.9				
CIFAR-100 (40 Tasks)							
ResNet HPS	38.01 ± 0.27	0.41 ± 0.02	63.4				
LASEM ResNet HPS 4G	$\textbf{39.89} \pm \textbf{0.73}$	0.62 ± 0.03	94.1				
LASEM ResNet HPS 5G	38.89 ± 0.11	0.55 ± 0.07	109.2				
LASEM ResNet HPS 6G	39.17 ± 0.62	0.56 ± 0.09	154.1				

Group-based LASEM supports deeper nets & longer lifelong scenarios

Summary of Contributions

- Investigated the importance of selective layer transfer
- Proposed an EM-based lifelong architecture search algorithm
 - Near-optimal peak per-task accuracy
 - Reduced catastrophic forgetting
 - Enhanced computational efficiency (time/memory)
 - Scalable to deeper architectures and more tasks

Please contact us with questions!

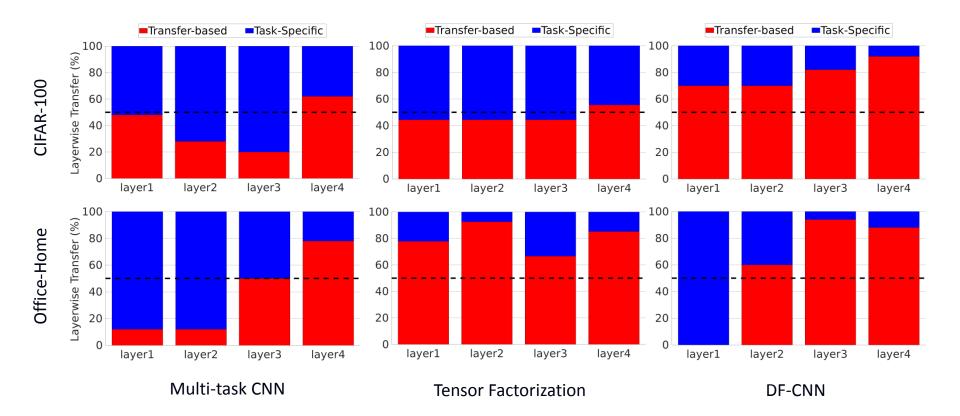
Seungwon Lee Univ. of Pennsylvania

Eric Eaton Univ. of Pennsylvania

Correspondence: {leeswon, eeaton}@seas.upenn.edu

Sharing Less is More: Lifelong Learning in Deep Networks with Selective Layer Transfer

Evaluation: Prob. of Selection



enn

GRASP LABORATORY

Engineering