Local Algorithms for Finding Densely Connected Clusters

Peter Macgregor He Sun

University of Edinburgh

Problem Statement

Given a graph, find two clusters A and B which are <u>densely</u> connected to each other and <u>loosely</u> connected to the rest of the graph.

Constraint in the local setting: the algorithm should run in time proportional to the size of returned clusters A and B.

Application: Interstate Dispute Graph

Bipartiteness

- lacktriangle Many edges between A and B
- Few edges inside A or B
- Few edges to the rest of the graph

Bipartiteness Ratio [Trevisan 2012]

$$\beta(A, B) = 1 - \frac{2w(A, B)}{\operatorname{vol}(A \cup B)}$$

Reduction by Double Cover

Given a graph G, its double cover H is constructed as follows:

- every vertex v has two corresponding vertices v_1, v_2 ;
- for every edge $\{u, v\}$, there are edges $\{u_1, v_2\}$ and $\{u_2, v_1\}$ in H.

Lemma

For sets A and B in the graph G, it holds that $\beta_G(A, B) = \Phi_H(A_1 \cup B_2)$.

The Simplify Operator

— Simplified Vector

For any $p \in \mathbb{R}^{2n}_{>0}$, the simplified vector p^* is defined by

$$p^*(u_1) \triangleq \max(0, p(u_1) - p(u_2)),$$

 $p^*(u_2) \triangleq \max(0, p(u_2) - p(u_1))$

for every vertex u.

The Algorithm for Undirected Graphs

— Algorithm (Informal)

- 1. Construct the double cover
- 2. Apply ACL-like method to compute vertex importances in the double cover
- 3. Compute the simplified importance vector
- 4. Return the vertices with high importance

Theorem (Informal)

Given a graph G and a starting vertex u from the target set $A \cup B$, there is a local algorithm which returns (A', B') with $\beta(A', B') = O\left(\sqrt{\beta(A, B)}\right)$.

Experimental Result: Interstate Dispute Graph

Flow Ratio

- lacktriangle Many edges from A to B
- Few edges inside A or B
- Few edges to the rest of the graph

Flow Ratio

$$F(A, B) = 1 - \frac{2w(A, B)}{\text{vol}_{\text{out}}(A) + \text{vol}_{\text{in}}(B)}$$

The Algorithm for Directed Graphs

Given a graph G, its semi-double cover H is constructed as follows:

- every vertex v has two corresponding vertices v_1, v_2 ;
- for every edge (u, v), there is an edge $\{u_1, v_2\}$ in H.

Theorem (Informal)

There is a local algorithm based on the semi-double cover which returns two clusters A and B with a bounded flow ratio F(A,B).

Experimental Results: USA Migration Graph

General migration trend from rural to urban areas