UnICORNN: A recurrent model for learning *very* long time dependencies

T. Konstantin Rusch Siddhartha Mishra

Seminar for Applied Mathematics (SAM)
Department of Mathematics
ETH Zürich

Learning very long-term dependencies with RNNs

- Learning long-term dependencies with RNNs is difficult (Pascanu et al, 2013)
 - → mitigate exploding and vanishing gradient problem

- Learning very long-term dependencies with RNNs is very difficult
 - → mitigate exploding and vanishing gradient problem
 - \rightarrow fast
 - → memory efficiency

UnICORNN architecture

Base RNN on Hamiltonian system:

$$\mathbf{y}' = \mathbf{z}, \quad \mathbf{z}' = -[\sigma(\mathbf{w} \odot \mathbf{y} + \mathbf{V}\mathbf{u} + \mathbf{b}) + \alpha \mathbf{y}],$$

hidden state y, input u.

 Discretize with "learnable multi-scale symplectic Euler" and stack layers to obtain UnICORNN:

$$\begin{split} & \boldsymbol{y}_n^\ell = \boldsymbol{y}_{n-1}^\ell + \Delta t \hat{\sigma}(\boldsymbol{c}^\ell) \odot \boldsymbol{z}_n^\ell, \\ & \boldsymbol{z}_n^\ell = \boldsymbol{z}_{n-1}^\ell - \Delta t \hat{\sigma}(\boldsymbol{c}^\ell) \odot [\sigma(\boldsymbol{w}^\ell \odot \boldsymbol{y}_{n-1}^\ell + \boldsymbol{V}^\ell \boldsymbol{y}_n^{\ell-1} + \boldsymbol{b}^I) + \alpha \boldsymbol{y}_{n-1}^\ell]. \end{split}$$

Properties of UnICORNN

- ullet Gradients bounded o no exploding gradient
- Non-vanishing hidden state gradients \rightarrow no vanishing gradient
- Invertible in time → memory efficient
- Multi-scale → increased expressivity
- ullet Independent hidden states o very fast implementation on GPUs

Results

Table: Permuted sequential MNIST (seq. length = 784)

Model	test accuracy	# units	# params
LSTM	92.9%	256	270k
GRU	94.1%	256	200k
expRNN	96.6%	512	127k
coRNN	97.3%	256	134k
dense-IndRNN (L =6)	97.2%	128	257k
UnICORNN $(L=3)$	98.4%	256	135k

Table: Health-care: Vital sign prediction (seq. length = 4000).

Model	respiratory rate	heart rate
LSTM	2.28 ± 0.25	10.7 ± 2.0
expRNN	1.57 ± 0.16	1.87 ± 0.19
IndRNN ($L=3$)	1.47 ± 0.09	2.1 ± 0.2
coRNN	1.45 ± 0.23	1.71 ± 0.1
UnICORNN ($L=3$)	1.06 ± 0.03	1.39 ± 0.09

Results

Table: EigenWorms: Real-world (genomics) dataset (seq. length \approx 18.000)

Model	test accuracy	# units	# params
t-BPTT LSTM	$57.9\% \pm 7.0\%$	32	5.3k
sub-samp. LSTM	$69.2\% \pm 8.3\%$	32	5.3k
expRNN IndRNN (L=2) coRNN UnICORNN (L=2)	$40.0\% \pm 10.1\%$	64	2.8k
	$49.7\% \pm 4.8\%$	32	1.6k
	$86.7\% \pm 3.0\%$	32	2.4k
	$90.3\% \pm 3.0\%$	32	1.5k

We empirically show EigenWorms exhibits extreme long-term dependencies

Conclusion

- Propose new multi-layer recurrent model based on Hamiltonian system
 - No exploding/vanishing gradient problem
 - Multi-scale behavior
 - Memory efficient
 - Fast
- Achieve SOTA on many LTD benchmarks (length up to ~ 18 k)
- Set new high bar for very challenging real-world tasks
- UnICORNN based on very simple system: Only first step
- We will test on more real-world medical data