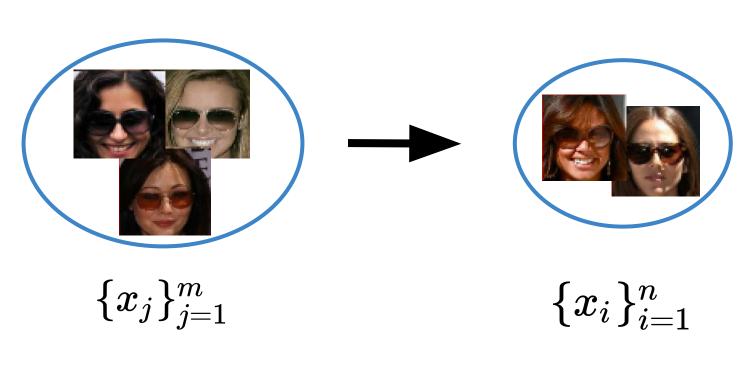
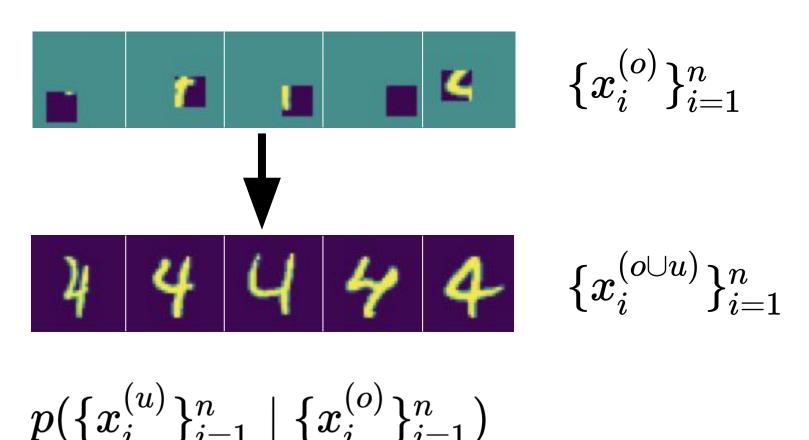
Partially Observed Exchangeable Modeling

Yang Li, Junier Oliva



dependencies among features

$$x_o \qquad x_u \cup x_o$$


$$p(x_u \mid x_o) \quad u, o \subseteq \{1, \ldots, d\}$$

dependencies among instances

$$p(\{x_i\}_{i=1}^n \mid \{x_j\}_{j=1}^m)$$

dependencies among features & instances

dependencies among features & instances

May 12, 2020

Age: 47

Weight: 160

Heart Rate: 104

Blood Test:

NSCs (Milont.)	8.00	3.5 to 10.5
Neutrophilo (N)	62	48 to 70
Lymphocytes (%)	20	25 to 45
Monocytes (%)	10	2 to 0
Ecolophilis (%)	1	110.5
Eosophilis (%)	0	II to 1
FBCs (Hillary).)	3.54	4.3 to 5.7
ra (yst)	11.7	13 to 17
Hernatocrit (%)	87	37 to 52
Platelets billion(.)	262	150 to 450

May 14, 2020

Age: 47 Weight: 160

Heart Rate: 102

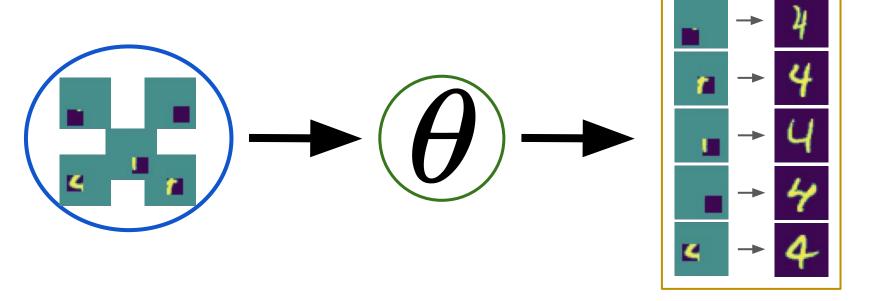
X-Ray:

MRI:

May 18, 2020

Age: 47

Weight: 160


Heart Rate: 108

Biopsy:

Partially Observed Exchangeable Modeling (POEx)

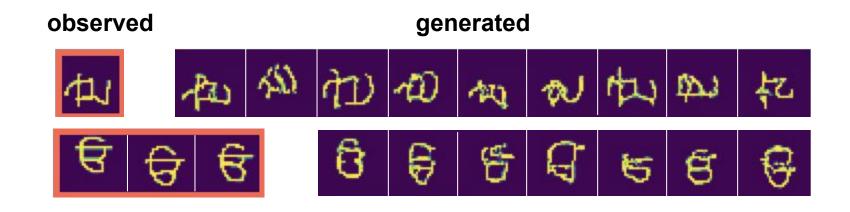
$$p(\{x_i^{(u)}\}_{i=1}^n \mid \{x_i^{(o)}\}_{i=1}^n)$$

$$q(heta \mid \{x_i^{(o)}\}_{i=1}^n) \qquad \prod_{i=1}^n p(x_i^{(u)} \mid x_i^{(o)}, heta)$$

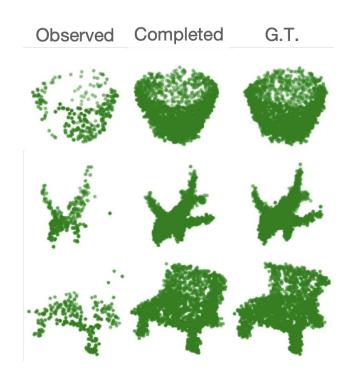
Few-shot Imputation

$$\{x_i^{(u)}\}_{i=1}^n \sim p(\{x_i^{(u)}\}_{i=1}^n \mid \{x_i^{(o)}\}_{i=1}^n)$$
G.T. $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ observed $\frac{1}{4}$ \frac

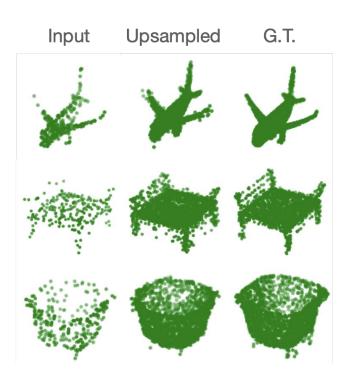
Set Expansion


$$\{x_i^{(u)}\}_{i=1}^n \sim p(\{x_i^{(u)}\}_{i=1}^n \mid \{x_i^{(o)}\}_{i=1}^n)$$

 $oldsymbol{\mathcal{X}}_i$ some are fully observed and others are fully unobserved

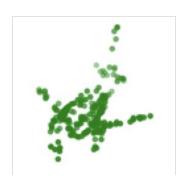


Few-shot Generation


generate novel instances given several examples on unseen classes

Point Cloud Expansion

point cloud completion


point cloud upsampling

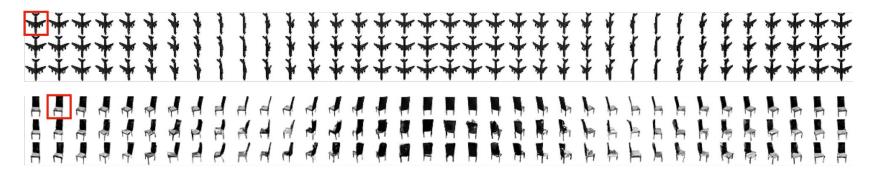
Set Compression

given

select

to represent the underlying geometry

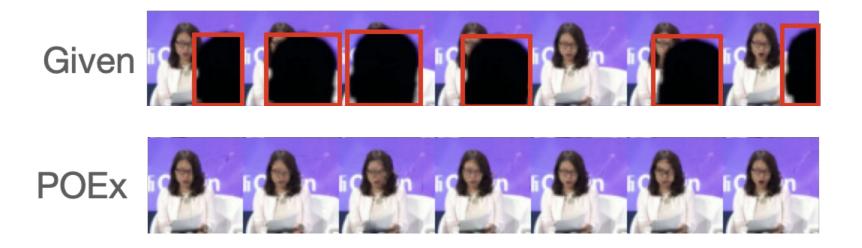
$$egin{aligned} o &= \emptyset \ &while \ |o| < K \ &i = argmax_{i
otin o} \ H(x_i \mid \{x_j; j \in o\}) \ &o = o \cup \{i\} \end{aligned}$$


The next element to select is the most uncertain one based on the current selection

Neural Processes

Introduce an index variable $\,t_i\,$ for each set element $\,x_i\,$

$$p(\{x_j; j
otin o\} \mid \{t_j; j
otin o\}, \{(t_i, x_i); i \in o\})$$


permutation equivariant permutation invariant

red box indicates the observed context; t represents the view points (angle)

Video Imputation

 $m{t}$ represents the timestamps of each frame



Set of Functions

model a set of correlated functions using a finite set of input-target pairs from each function

$$p(\{\{y_t\}_{t=1}^{N_t}\}_{k=1}^K \mid \{\{x_t\}_{t=1}^{N_t}\}_{k=1}^K, \{\{(x_c, y_c)\}_{c=1}^{N_c}\}_{k=1}^K)$$

permutation equivariant permutation invariant

Summary

 POEx jointly models the intra-instance (among features in a point) and the inter-instance (among multiple points in a set) dependencies in data

 POEx is a general framework that encompasses many existing tasks such as point cloud expansion and few-shot generation

POEx enables imputation model to leverage information from multiple instances

POEx can be extended to model a set of correlated functions

Thanks!

