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Markov Decision Processes (MDP)

@ We consider a discounted reward MDP described by a
5-tuple (S, A, P,r,7y)
e S: finite state space; A: finite action space; P: transition
probabilities; r: rewards; y: discount factor.
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Markov Decision Processes (MDP)

@ We consider a discounted reward MDP described by a
5-tuple (S, A, P,r,7y)
e S: finite state space; A: finite action space; P: transition
probabilities; r: rewards; y: discount factor.

@ Value function of a given stationary policy u:

VE(s) = Euss [i)}/’fm]
t=

@ Policy evaluation refers to the problem of estimating the
value function V~.
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Assumption on Markov Chain

@ For a given stationary policy u, the probability transition
matrix P* can be defined as:

=Y u(s,a)P(ss,a).
acA
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Assumption on Markov Chain

@ For a given stationary policy u, the probability transition
matrix P* can be defined as:

=Y u(s,a)P(ss,a).
acA

Assumption 1

The Markov chain whose transition matrix is the matrix P is
irreducible and aperiodic.

@ Following this assumption, the Markov decision process
induced by the policy u is ergodic with a unique
stationary distribution & = (¢, 7o, -+ , 7p)
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Linear Function Approximation

@ To reduce computational complexity, a standard remedy
is to use low dimensional approximation Vg‘ of V¥ in the
classical TD algorithm.
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Linear Function Approximation

@ To reduce computational complexity, a standard remedy
is to use low dimensional approximation Vg‘ of V¥ in the
classical TD algorithm.

@ Consider linear function approximation:

K
Vy(s)=) 6i¢/(s) VseS
=1

for a given set of K feature vectors ¢,: S — R, / € [K].
Furthermore, let

0(S) = (¢1(5), 92(8), -, ok (s)) T € RK.

Assumption 2

The feature vectors {¢1,...,¢x} are linearly independent.
Additionally, we also assume that ||¢(s)[|5 < 1 for s€ S.
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TD(0) with Linear Function Approximation

@ TD(0) with linear function approximation updates
parameter vector as:

0111 = Ot + 04 91(64),

where g¢(6;) = (r(st,s;) + 0] d(s;) — 6] d(s1))9(st)-
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where g¢(6;) = (r(st, ;) + 16/ 9(st) — 6 9(51))9(st).
@ Let g(0) denote the average of g;(6):

30)= Y w(s)P(s,8) (r(s,8)+79(5) 70— 9(5)70) 9(s).

5,8'eS

5/18



TD(0) with Linear Function Approximation

@ TD(0) with linear function approximation updates
parameter vector as:

0111 = Ot + 04 91(64),

where g¢(6;) = (r(st, ;) + 16/ 9(st) — 6 9(51))9(st).
@ Let g(0) denote the average of g;(6):

3(0)= Y w(s)P"(s,8) (r(s.8)+79(5) 70— 9(5)70) 9(s).
5,8'eS
@ Under Assumptions 1-2 as well as an additional
assumption on the decay of the step-sizes o, TD
learning converges almost surely; furthermore, its limit
0* satisfies: g(6*) = 0. [Tsitsiklis & Van Roy(1997)]
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Gradient Splitting and Gradient Descent

Definition of Gradient Splitting

Let A be a symmetric positive semi-definite matrix. A linear
function h(6) = B(6 — a) is called a gradient splitting of the
quadratic f(0) = (6 —a)T A(6 — a) if

B+BT =2A. )
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Gradient Splitting and Gradient Descent

Definition of Gradient Splitting

Let A be a symmetric positive semi-definite matrix. A linear
function h(6) = B(6 — a) is called a gradient splitting of the
quadratic f(0) = (6 —a)T A(6 — a) if

B+ BT =2A.

Proposition 1 [Why is gradient splittings useful?]
Suppose h(0) is a splitting of the gradient of f(6). Then

(61— 62)7 (h(61) — h(62)) = %(91 —60)7 (V£(61) — V£(62)).

Furthermore, for all 8, (a— 6)Th(0) = 1(a—6)TV£(8).

y
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V(0
) f(6)
1 i h(6)
0 1 5 T

@ 0=(0,007,a=(1,1)T, A= (2) 2) B= (_11 ;)

@ f(6)=(0—a)TA6—a), h()=B(6 —a). h(h)is a
gradient splitting of f(6).



More Comments

@ Negative gradient splitting has the same positive inner
product with the direction to optimality as the negative
gradient.

@ Therefore, gradient splitting “makes progress” towards
the optimal solution as gradient descent.

@ As a consequence of this discussion, we can apply the
existing proof for gradient descent almost verbatim to
gradient splittings.
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Mean-path TD(0)

@ Mean-path TD(0) updates parameter vector as:

Ot1 = 0+ g(6r).
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Mean-path TD(0)

@ Mean-path TD(0) updates parameter vector as:
Ot1 = 0+ g(6r).

@ Will the mean-path TD update brings 6; closer to 6*?
e 9(0)7(6*—0) > 0. [Tsitsiklis & Van Roy(1997)]
0 g(8)7(6"—8)>(1—7)| Ve — Vo|3 [Tsitsiklis & Van
Roy(1997), Bhandari et al(2018)], where

IVIZ=VTDV =Y msVZ(s).

ses

9/18



Our Main Result

Theorem 1

Suppose Assumptions 1-2 hold. Then in the TD(0) update,
—g(0) is a splitting of the gradient of the quadratic

f(8) = (1= 1) Vo — Vo- Il + ¥l Vo — Vor IR,

where ||V[[3;, = 3 X5 ses TsP(s,8)(V(8) - V(s))%.
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Our Main Result

Theorem 1

Suppose Assumptions 1-2 hold. Then in the TD(0) update,
—g(0) is a splitting of the gradient of the quadratic

f(8) = (1= 1) Vo — Vo- Il + ¥l Vo — Vor IR,

where || V||2Dir = %Zs,s’es nsP(s,s)(V(s') - V(S))Z-

Corollary 1
For any 6 € RX,

(6*—6)7g(6) = (1 —7)||Ver — Vo|3+7I| Ve — Vo|3s-

v
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Markovian Samples and Step-size

@ We want use Corollary 1 to obtain improved convergence
times for TD(0).
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Markovian Samples and Step-size

@ We want use Corollary 1 to obtain improved convergence
times for TD(0).
@ Collecting data: a single sample path of a Markov chain.
@ Choice of step-size: O(1/V/T)
e For faster decaying step-sizes, for example O(1/t),

performance will scale with the inverse of the smallest
eigenvalue of ®7 Do or related quantity, and these can be

quite small.
e However, for step-size O(1/+/T), this is not the case.
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Assumption on Markovian Samples

Assumption 3
There are constants m >0 and p € (0, 1) such that

SupdTV(Pt(S, )577’.) < mpt t € Np,

seS

where drv(P, Q) denotes the total-variation distance between
probability measures P and Q. In addition, the initial
distribution of sy is the steady-state distribution z, so that
(so0,S1,---) is a stationary sequence.
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Projected TD(0)

@ Consider the projected TD(0) update:

6:.1 = Projg(6; + 0:9:(64)),

where © is a convex set containing the optimal solution
0.
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Projected TD(0)

@ Consider the projected TD(0) update:

6:.1 = Projg(6; + 0:9:(64)),

where © is a convex set containing the optimal solution
0.

@ Moreover, we will assume that the norm of every element
in © is at most Ry.
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Improved Error Bounds

Corollary 2
Suppose Assumptions 1-3 hold. Suppose further that (6;):-0
is generated by the Projected TD algorithm with 6* € © and
og=--=oar=1/V/T. Then
E[(1=9)lIVo: — Vg, 1B+ 71 Vor — Va, I3 ]
16— 8ol3+ G2 [9-+ 12¢m (1/V/T) |
<
= Zﬁ )

where ™ is standard notation for the mixing time of the
Markov chain: t™*(g) = min{t € N,t > 1|mp! < e}.
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Improved Error Bounds

Corollary 2
Suppose Assumptions 1-3 hold. Suppose further that (6;):-0
is generated by the Projected TD algorithm with 6* € © and
og=--=oar=1/V/T. Then
E[(1=9)lIVo: — Vg, 1B+ 71 Vor — Va, I3 ]
16— 8ol3+ G2 [9-+ 12¢m (1/V/T) |
<
= Zﬁ )

where ™ is standard notation for the mixing time of the
Markov chain: t™*(g) = min{t € N,t > 1|mp! < e}.

@ We also generalize gradient splitting and improved error
bound on TD(0) to TD(A) in our paper.
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Compare to Existing Bounds

@ Theorem 3(a) in Bhandari et al(2018):

10"~ 6p)3  G°[9+ 120" (1/VT)]

_ 12
E[HVQ*_V@THD]Sz(-I_,},)\/T_’_ VT
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Compare to Existing Bounds

@ Theorem 3(a) in Bhandari et al(2018):
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@ This upper bound blows up as y — 1.

E[IIVer — Vg I13] <
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o —ao3 G |9+12e™ (1/VT)]
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@ This upper bound blows up as y — 1.
@ However, based on Corollary 2, we can obtain

E[IVe =V, IB] <

Ef|IVe - V5 13,] < 6"~ 6l , & [0+ 1207 (1/VT)]
0 671IDir| = 2/)/\/7 zyﬁ ‘
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Compare to Existing Bounds

@ Theorem 3(a) in Bhandari et al(2018):
o'~ ajg G (912 (1/VT)]
2(1-y)VT 2(1-y)VT '

@ This upper bound blows up as y — 1.
@ However, based on Corollary 2, we can obtain

E[IIVer — Vg I13] <

Ef|IVe - V5 13,] < 6"~ 6l , & [0+ 1207 (1/VT)]
0 671IDir| = 2)/\/7 zyﬁ ‘

@ Therefore, the error of averaged & projected temporal
difference learning projected on 1+ does not blow up as
y—1.
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The Scaling with the Discount Factor

@ Is it possible to remove the dependence on O(1/(1—7))
from bounds on the performance of temporal difference
learning?
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The Scaling with the Discount Factor

@ Is it possible to remove the dependence on O(1/(1—7))
from bounds on the performance of temporal difference

learning?

@ Unfortunately, the answer is no. However, it is possible to
derive a bound where the only scaling with 1/(1 —17) is in
the asymptotically negligible term.
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Mean-adjusted TD(0)

Algorithm 1 Mean-adjusted TD(0)

. Initialize Ay =0, sy ~ &, and some initial condition 6.
- fort=0to T—1do

Projected TD(0) update:

6111 = Projg (6 + 01¢gt(64))

Keep track of the average reward: A, =
. end for _

. Set \A/T = 1ATTY
: Output V7 = V§T+ <\A/T— ﬂTVéT> 1

W

tA+ T 1
t+1
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A Better Scaling with the Discount Factor

Corollary 3
Suppose that (6;):~0 and V7 are generated by Algorithm 1
with step-sizes oy = --- = ar = 1/V/T. Let ty be the largest

integer which satisfies t, < 2™ (2(t +1)> Then as long as
T > 1y, we will have

2 mix 1
E[Ivy-VviI3| <0 (E [I1ve: — vI] + fmaxz1 _%;T;n)

10—l +G 1™V [Py 1
= T mln{ - ’1—}’} .
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