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Markov Decision Processes (MDP)

We consider a discounted reward MDP described by a
5-tuple (S,A,P, r ,γ)

S: finite state space; A: finite action space; P: transition
probabilities; r : rewards; γ: discount factor.

Value function of a given stationary policy µ:

V µ(s) = Eµ,s

[
∞

∑
t=0

γ
t rt+1

]

Policy evaluation refers to the problem of estimating the
value function V µ .
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Assumption on Markov Chain

For a given stationary policy µ, the probability transition
matrix Pµ can be defined as:

Pµ(s,s′) = ∑
a∈A

µ(s,a)P(s′|s,a).

Assumption 1
The Markov chain whose transition matrix is the matrix Pµ is
irreducible and aperiodic.

Following this assumption, the Markov decision process
induced by the policy µ is ergodic with a unique
stationary distribution π = (π1,π2, · · · ,πn)
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Linear Function Approximation
To reduce computational complexity, a standard remedy
is to use low dimensional approximation V µ

θ
of V µ in the

classical TD algorithm.

Consider linear function approximation:

V µ

θ
(s) =

K

∑
l=1

θlφl(s) ∀s ∈ S

for a given set of K feature vectors φl : S → R, l ∈ [K ].
Furthermore, let

φ(s) = (φ1(s),φ2(s), · · · ,φK (s))T ∈ RK .

Assumption 2
The feature vectors {φ1, . . . ,φK} are linearly independent.
Additionally, we also assume that ‖φ(s)‖22 ≤ 1 for s ∈ S.
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TD(0) with Linear Function Approximation

TD(0) with linear function approximation updates
parameter vector as:

θt+1 = θt + αtgt(θt),

where gt(θt) = (r(st ,s′t) + γθ T
t φ(s′t)−θ T

t φ(st))φ(st).

Let ḡ(θ ) denote the average of gt(θ ):

ḡ(θ) = ∑
s,s′∈S

π(s)Pµ (s,s′)
(

r(s,s′) + γφ(s′)T
θ −φ(s)T

θ

)
φ(s).

Under Assumptions 1-2 as well as an additional
assumption on the decay of the step-sizes αt , TD
learning converges almost surely; furthermore, its limit
θ ∗ satisfies: ḡ(θ ∗) = 0. [Tsitsiklis & Van Roy(1997)]

5 / 18



TD(0) with Linear Function Approximation

TD(0) with linear function approximation updates
parameter vector as:

θt+1 = θt + αtgt(θt),

where gt(θt) = (r(st ,s′t) + γθ T
t φ(s′t)−θ T

t φ(st))φ(st).
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Gradient Splitting and Gradient Descent

Definition of Gradient Splitting
Let A be a symmetric positive semi-definite matrix. A linear
function h(θ ) = B(θ −a) is called a gradient splitting of the
quadratic f (θ ) = (θ −a)T A(θ −a) if

B + BT = 2A.

Proposition 1 [Why is gradient splittings useful?]
Suppose h(θ ) is a splitting of the gradient of f (θ ). Then

(θ1−θ2)T (h(θ1)−h(θ2)) =
1
2

(θ1−θ2)T (∇f (θ1)−∇f (θ2)) .

Furthermore, for all θ , (a−θ )T h(θ ) = 1
2(a−θ )T ∇f (θ ).
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Example

x

y

a− θ

−∇f(θ)

−h(θ)

0

1

2

1 2

θ = (0,0)T , a = (1,1)T , A =

(
1 0
0 2

)
, B =

(
1 1
−1 2

)
f (θ ) = (θ −a)T A(θ −a), h(θ ) = B(θ −a). h(θ ) is a
gradient splitting of f (θ ).
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More Comments

Negative gradient splitting has the same positive inner
product with the direction to optimality as the negative
gradient.
Therefore, gradient splitting “makes progress” towards
the optimal solution as gradient descent.
As a consequence of this discussion, we can apply the
existing proof for gradient descent almost verbatim to
gradient splittings.
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Mean-path TD(0)

Mean-path TD(0) updates parameter vector as:

θt+1 = θt + αt ḡ(θt).

Will the mean-path TD update brings θt closer to θ ∗?
ḡ(θ)T (θ ∗−θ) > 0. [Tsitsiklis & Van Roy(1997)]
ḡ(θ)T (θ ∗−θ)≥ (1− γ)‖Vθ ∗−Vθ‖2D [Tsitsiklis & Van
Roy(1997), Bhandari et al(2018)], where

‖V‖2D = V T DV = ∑
s∈S

πsV 2(s).
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Our Main Result

Theorem 1
Suppose Assumptions 1-2 hold. Then in the TD(0) update,
−ḡ(θ ) is a splitting of the gradient of the quadratic

f (θ ) = (1− γ)‖Vθ −Vθ∗‖2D + γ‖Vθ −Vθ∗‖2Dir,

where ‖V‖2Dir = 1
2 ∑s,s′∈S πsP(s,s′)(V (s′)−V (s))2.

Corollary 1
For any θ ∈ RK ,

(θ
∗−θ)T ḡ(θ) = (1− γ)‖Vθ ∗−Vθ‖2D + γ‖Vθ ∗−Vθ‖2Dir.
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Markovian Samples and Step-size

We want use Corollary 1 to obtain improved convergence
times for TD(0).

Collecting data: a single sample path of a Markov chain.
Choice of step-size: O(1/

√
T )

For faster decaying step-sizes, for example O(1/t),
performance will scale with the inverse of the smallest
eigenvalue of ΦT DΦ or related quantity, and these can be
quite small.
However, for step-size O(1/

√
T ), this is not the case.
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Assumption on Markovian Samples

Assumption 3
There are constants m > 0 and ρ ∈ (0,1) such that

sup
s∈S

dTV(P t(s, ·),π)≤mρ
t t ∈ N0,

where dTV(P,Q) denotes the total-variation distance between
probability measures P and Q. In addition, the initial
distribution of s0 is the steady-state distribution π, so that
(s0,s1, · · ·) is a stationary sequence.
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Projected TD(0)

Consider the projected TD(0) update:

θt+1 = ProjΘ(θt + αtgt(θt)),

where Θ is a convex set containing the optimal solution
θ ∗.

Moreover, we will assume that the norm of every element
in Θ is at most Rθ .
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Improved Error Bounds

Corollary 2
Suppose Assumptions 1-3 hold. Suppose further that (θt)t≥0
is generated by the Projected TD algorithm with θ ∗ ∈Θ and
α0 = · · ·= αT = 1/

√
T . Then

E
[
(1− γ)‖Vθ ∗−V

θ̄T
‖2D + γ‖Vθ ∗−V

θ̄T
‖2Dir

]
≤
‖θ ∗−θ0‖22 + G2

[
9 + 12τmix

(
1/
√

T
)]

2
√

T
,

where τmix is standard notation for the mixing time of the
Markov chain: τmix(ε) = min

{
t ∈ N, t ≥ 1|mρ t ≤ ε

}
.

We also generalize gradient splitting and improved error
bound on TD(0) to TD(λ ) in our paper.
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Compare to Existing Bounds

Theorem 3(a) in Bhandari et al(2018):

E
[
‖Vθ ∗−V

θ̄T
‖2D
]
≤ ‖θ

∗−θ0‖22
2(1− γ)

√
T

+
G2
[
9 + 12τmix

(
1/
√

T
)]

2(1− γ)
√

T
.

This upper bound blows up as γ → 1.
However, based on Corollary 2, we can obtain

E
[
‖Vθ ∗−V

θ̄T
‖2Dir

]
≤ ‖θ

∗−θ0‖22
2γ
√

T
+

G2
[
9 + 12τmix

(
1/
√

T
)]

2γ
√

T
.

Therefore, the error of averaged & projected temporal
difference learning projected on 1⊥ does not blow up as
γ → 1.
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The Scaling with the Discount Factor

Is it possible to remove the dependence on O(1/(1− γ))
from bounds on the performance of temporal difference
learning?

Unfortunately, the answer is no. However, it is possible to
derive a bound where the only scaling with 1/(1− γ) is in
the asymptotically negligible term.
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Mean-adjusted TD(0)

Algorithm 1 Mean-adjusted TD(0)
1: Initialize Ā0 = 0, s0 ∼ π, and some initial condition θ0.
2: for t = 0 to T −1 do
3: Projected TD(0) update:

θt+1 = ProjΘ (θt + αtgt(θt))

4: Keep track of the average reward: Āt+1 =
tĀt +rt+1

t+1
5: end for
6: Set V̂T = ĀT

1−γ

7: Output V ′T = V
θ̄T

+
(

V̂T −πT V
θ̄T

)
1
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A Better Scaling with the Discount Factor

Corollary 3
Suppose that (θt)t≥0 and V ′T are generated by Algorithm 1
with step-sizes α0 = · · ·= αT = 1/

√
T . Let t0 be the largest

integer which satisfies t0 ≤ 2τmix
(

1
2(t0+1)

)
. Then as long as

T ≥ t0, we will have

E
[
‖V ′T −V‖2D

]
≤O

E
[
‖Vθ ∗−V‖2D

]
+

r2
maxτmix

(
1

2(T +1)

)
(1− γ)2T

+
‖θ ∗−θ0‖22 + G2

[
1 + τmix(1/

√
T )
]

√
T

min

{
r(P)

γ
,

1
1− γ

} .

18 / 18


