Temporal Difference Learning as Gradient Splitting

Rui Liu ${ }^{1}$ Alex Olshevsky ${ }^{2}$
${ }^{1}$ Division of Systems Engineering, Boston University
${ }^{2}$ Department of ECE and Division of Systems Engineering, Boston University

$$
\begin{aligned}
& \text { BOSTON } \\
& \text { UNIVERSITY }
\end{aligned}
$$

Markov Decision Processes (MDP)

- We consider a discounted reward MDP described by a 5-tuple $(\mathcal{S}, \mathcal{A}, \mathcal{P}, r, \gamma)$
- \mathcal{S} : finite state space; \mathcal{A} : finite action space; \mathcal{P} : transition probabilities; r : rewards; γ : discount factor.

Markov Decision Processes (MDP)

- We consider a discounted reward MDP described by a 5-tuple ($\mathcal{S}, \mathcal{A}, \mathcal{P}, r, \gamma$)
- \mathcal{S} : finite state space; \mathcal{A} : finite action space; \mathcal{P} : transition probabilities; r : rewards; γ : discount factor.
- Value function of a given stationary policy μ :

$$
V^{\mu}(s)=E_{\mu, s}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t+1}\right]
$$

Markov Decision Processes (MDP)

- We consider a discounted reward MDP described by a 5-tuple ($\mathcal{S}, \mathcal{A}, \mathcal{P}, r, \gamma$)
- \mathcal{S} : finite state space; \mathcal{A} : finite action space; \mathcal{P} : transition probabilities; r : rewards; γ : discount factor.
- Value function of a given stationary policy μ :

$$
V^{\mu}(s)=E_{\mu, s}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t+1}\right]
$$

- Policy evaluation refers to the problem of estimating the value function V^{μ}.

Assumption on Markov Chain

- For a given stationary policy μ, the probability transition matrix P^{μ} can be defined as:

$$
P^{\mu}\left(s, s^{\prime}\right)=\sum_{a \in \mathcal{A}} \mu(s, a) \mathcal{P}\left(s^{\prime} \mid s, a\right)
$$

Assumption on Markov Chain

- For a given stationary policy μ, the probability transition matrix P^{μ} can be defined as:

$$
P^{\mu}\left(s, s^{\prime}\right)=\sum_{a \in \mathcal{A}} \mu(s, a) \mathcal{P}\left(s^{\prime} \mid s, a\right) .
$$

Assumption 1

The Markov chain whose transition matrix is the matrix P^{μ} is irreducible and aperiodic.

Assumption on Markov Chain

- For a given stationary policy μ, the probability transition matrix P^{μ} can be defined as:

$$
P^{\mu}\left(s, s^{\prime}\right)=\sum_{a \in \mathcal{A}} \mu(s, a) \mathcal{P}\left(s^{\prime} \mid s, a\right) .
$$

Assumption 1

The Markov chain whose transition matrix is the matrix P^{μ} is irreducible and aperiodic.

- Following this assumption, the Markov decision process induced by the policy μ is ergodic with a unique stationary distribution $\pi=\left(\pi_{1}, \pi_{2}, \cdots, \pi_{n}\right)$

Linear Function Approximation

- To reduce computational complexity, a standard remedy is to use low dimensional approximation V_{θ}^{μ} of V^{μ} in the classical TD algorithm.

Linear Function Approximation

- To reduce computational complexity, a standard remedy is to use low dimensional approximation V_{θ}^{μ} of V^{μ} in the classical TD algorithm.
- Consider linear function approximation:

$$
V_{\theta}^{\mu}(s)=\sum_{l=1}^{K} \theta_{l} \phi_{l}(s) \quad \forall s \in \mathcal{S}
$$

for a given set of K feature vectors $\phi_{I}: \mathcal{S} \rightarrow \mathbb{R}, I \in[K]$.
Furthermore, let

$$
\phi(s)=\left(\phi_{1}(s), \phi_{2}(s), \cdots, \phi_{K}(s)\right)^{T} \in \mathbb{R}^{K} .
$$

Linear Function Approximation

- To reduce computational complexity, a standard remedy is to use low dimensional approximation V_{θ}^{μ} of V^{μ} in the classical TD algorithm.
- Consider linear function approximation:

$$
V_{\theta}^{\mu}(s)=\sum_{l=1}^{K} \theta_{l} \phi_{l}(s) \quad \forall s \in \mathcal{S}
$$

for a given set of K feature vectors $\phi_{l}: \mathcal{S} \rightarrow \mathbb{R}, I \in[K]$.
Furthermore, let

$$
\phi(s)=\left(\phi_{1}(s), \phi_{2}(s), \cdots, \phi_{K}(s)\right)^{T} \in \mathbb{R}^{K} .
$$

Assumption 2

The feature vectors $\left\{\phi_{1}, \ldots, \phi_{K}\right\}$ are linearly independent. Additionally, we also assume that $\|\phi(s)\|_{2}^{2} \leq 1$ for $s \in \mathcal{S}$.

TD(0) with Linear Function Approximation

- TD(0) with linear function approximation updates parameter vector as:

$$
\theta_{t+1}=\theta_{t}+\alpha_{t} g_{t}\left(\theta_{t}\right),
$$

where $g_{t}\left(\theta_{t}\right)=\left(r\left(s_{t}, s_{t}^{\prime}\right)+\gamma \theta_{t}^{T} \phi\left(s_{t}^{\prime}\right)-\theta_{t}^{T} \phi\left(s_{t}\right)\right) \phi\left(s_{t}\right)$.

TD(0) with Linear Function Approximation

- TD(0) with linear function approximation updates parameter vector as:

$$
\theta_{t+1}=\theta_{t}+\alpha_{t} g_{t}\left(\theta_{t}\right),
$$

where $g_{t}\left(\theta_{t}\right)=\left(r\left(s_{t}, s_{t}^{\prime}\right)+\gamma \theta_{t}^{T} \phi\left(s_{t}^{\prime}\right)-\theta_{t}^{T} \phi\left(s_{t}\right)\right) \phi\left(s_{t}\right)$.

- Let $\bar{g}(\theta)$ denote the average of $g_{t}(\theta)$:

$$
\bar{g}(\theta)=\sum_{s, s^{\prime} \in \mathcal{S}} \pi(s) P^{\mu}\left(s, s^{\prime}\right)\left(r\left(s, s^{\prime}\right)+\gamma \phi\left(s^{\prime}\right)^{\top} \theta-\phi(s)^{\top} \theta\right) \phi(s) .
$$

TD(0) with Linear Function Approximation

- TD(0) with linear function approximation updates parameter vector as:

$$
\theta_{t+1}=\theta_{t}+\alpha_{t} g_{t}\left(\theta_{t}\right)
$$

where $g_{t}\left(\theta_{t}\right)=\left(r\left(s_{t}, s_{t}^{\prime}\right)+\gamma \theta_{t}^{T} \phi\left(s_{t}^{\prime}\right)-\theta_{t}^{T} \phi\left(s_{t}\right)\right) \phi\left(s_{t}\right)$.

- Let $\bar{g}(\theta)$ denote the average of $g_{t}(\theta)$:

$$
\bar{g}(\theta)=\sum_{s, s^{\prime} \in \mathcal{S}} \pi(s) P^{\mu}\left(s, s^{\prime}\right)\left(r\left(s, s^{\prime}\right)+\gamma \phi\left(s^{\prime}\right)^{T} \theta-\phi(s)^{\top} \theta\right) \phi(s) .
$$

- Under Assumptions 1-2 as well as an additional assumption on the decay of the step-sizes α_{t}, TD learning converges almost surely; furthermore, its limit θ^{*} satisfies: $\bar{g}\left(\theta^{*}\right)=0$. [Tsitsiklis \& Van Roy(1997)]

Gradient Splitting and Gradient Descent

Definition of Gradient Splitting

Let A be a symmetric positive semi-definite matrix. A linear function $h(\theta)=B(\theta-a)$ is called a gradient splitting of the quadratic $f(\theta)=(\theta-a)^{T} A(\theta-a)$ if

$$
B+B^{T}=2 A
$$

Gradient Splitting and Gradient Descent

Definition of Gradient Splitting

Let A be a symmetric positive semi-definite matrix. A linear function $h(\theta)=B(\theta-a)$ is called a gradient splitting of the quadratic $f(\theta)=(\theta-a)^{T} A(\theta-a)$ if

$$
B+B^{T}=2 A .
$$

Proposition 1 [Why is gradient splittings useful?]

 Suppose $h(\theta)$ is a splitting of the gradient of $f(\theta)$. Then$$
\left(\theta_{1}-\theta_{2}\right)^{T}\left(h\left(\theta_{1}\right)-h\left(\theta_{2}\right)\right)=\frac{1}{2}\left(\theta_{1}-\theta_{2}\right)^{T}\left(\nabla f\left(\theta_{1}\right)-\nabla f\left(\theta_{2}\right)\right) .
$$

Furthermore, for all $\theta,(a-\theta)^{T} h(\theta)=\frac{1}{2}(a-\theta)^{T} \nabla f(\theta)$.

Example

- $\theta=(0,0)^{T}, a=(1,1)^{T}, A=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right), B=\left(\begin{array}{cc}1 & 1 \\ -1 & 2\end{array}\right)$
- $f(\theta)=(\theta-a)^{T} A(\theta-a), h(\theta)=B(\theta-a) . h(\theta)$ is a gradient splitting of $f(\theta)$.

More Comments

- Negative gradient splitting has the same positive inner product with the direction to optimality as the negative gradient.
- Therefore, gradient splitting "makes progress" towards the optimal solution as gradient descent.
- As a consequence of this discussion, we can apply the existing proof for gradient descent almost verbatim to gradient splittings.

Mean-path TD(0)

- Mean-path TD(0) updates parameter vector as:

$$
\theta_{t+1}=\theta_{t}+\alpha_{t} \bar{g}\left(\theta_{t}\right)
$$

Mean-path TD(0)

- Mean-path TD(0) updates parameter vector as:

$$
\theta_{t+1}=\theta_{t}+\alpha_{t} \bar{g}\left(\theta_{t}\right)
$$

- Will the mean-path TD update brings θ_{t} closer to θ^{*} ?
- $\bar{g}(\theta)^{T}\left(\theta^{*}-\theta\right)>0$. [Tsitsiklis \& Van Roy (1997)]
- $\bar{g}(\theta)^{T}\left(\theta^{*}-\theta\right) \geq(1-\gamma)\left\|V_{\theta^{*}}-V_{\theta}\right\|_{D}^{2}$ [Tsitsiklis \& Van Roy(1997), Bhandari et al(2018)], where

$$
\|V\|_{D}^{2}=V^{\top} D V=\sum_{s \in \mathcal{S}} \pi_{s} V^{2}(s) .
$$

Our Main Result

Theorem 1

Suppose Assumptions 1-2 hold. Then in the TD(0) update, $-\bar{g}(\theta)$ is a splitting of the gradient of the quadratic

$$
f(\theta)=(1-\gamma)\left\|V_{\theta}-V_{\theta^{*}}\right\|_{D}^{2}+\gamma\left\|V_{\theta}-V_{\theta^{*}}\right\|_{\text {Dir }}^{2},
$$

where $\|V\|_{\text {Dir }}^{2}=\frac{1}{2} \Sigma_{s, s^{\prime} \in \mathcal{S}} \pi_{s} P\left(s, s^{\prime}\right)\left(V\left(s^{\prime}\right)-V(s)\right)^{2}$.

Our Main Result

Theorem 1

Suppose Assumptions 1-2 hold. Then in the TD(0) update, $-\bar{g}(\theta)$ is a splitting of the gradient of the quadratic

$$
f(\theta)=(1-\gamma)\left\|V_{\theta}-V_{\theta^{*}}\right\|_{D}^{2}+\gamma\left\|V_{\theta}-V_{\theta^{*}}\right\|_{\text {Dir }}^{2},
$$

where $\|V\|_{\text {Dir }}^{2}=\frac{1}{2} \sum_{s, s^{\prime} \in \mathcal{S}} \pi_{s} P\left(s, s^{\prime}\right)\left(V\left(s^{\prime}\right)-V(s)\right)^{2}$.

Corollary 1

For any $\theta \in \mathbb{R}^{K}$,

$$
\left(\theta^{*}-\theta\right)^{T} \bar{g}(\theta)=(1-\gamma)\left\|V_{\theta^{*}}-V_{\theta}\right\|_{D}^{2}+\gamma\left\|V_{\theta^{*}}-V_{\theta}\right\|_{\text {Dir }}^{2}
$$

Markovian Samples and Step-size

- We want use Corollary 1 to obtain improved convergence times for TD(0).

Markovian Samples and Step-size

- We want use Corollary 1 to obtain improved convergence times for TD(0).
- Collecting data: a single sample path of a Markov chain.

Markovian Samples and Step-size

- We want use Corollary 1 to obtain improved convergence times for TD(0).
- Collecting data: a single sample path of a Markov chain.
- Choice of step-size: $O(1 / \sqrt{T})$
- For faster decaying step-sizes, for example $O(1 / t)$, performance will scale with the inverse of the smallest eigenvalue of $\Phi^{\top} D \Phi$ or related quantity, and these can be quite small.
- However, for step-size $O(1 / \sqrt{T})$, this is not the case.

Assumption on Markovian Samples

Assumption 3

There are constants $m>0$ and $\rho \in(0,1)$ such that

$$
\sup _{s \in \mathcal{S}} d_{\mathrm{TV}}\left(P^{t}(s, \cdot), \pi\right) \leq m \rho^{t} \quad t \in \mathbb{N}_{0},
$$

where $d_{\mathrm{TV}}(P, Q)$ denotes the total-variation distance between probability measures P and Q. In addition, the initial distribution of s_{0} is the steady-state distribution π, so that $\left(s_{0}, s_{1}, \cdots\right)$ is a stationary sequence.

Projected TD(0)

- Consider the projected TD(0) update:

$$
\theta_{t+1}=\operatorname{Proj}_{\ominus}\left(\theta_{t}+\alpha_{t} g_{t}\left(\theta_{t}\right)\right),
$$

where Θ is a convex set containing the optimal solution θ^{*}.

Projected TD(0)

- Consider the projected TD(0) update:

$$
\theta_{t+1}=\operatorname{Proj}_{\Theta}\left(\theta_{t}+\alpha_{t} g_{t}\left(\theta_{t}\right)\right),
$$

where Θ is a convex set containing the optimal solution θ^{*}.

- Moreover, we will assume that the norm of every element in Θ is at most R_{θ}.

Improved Error Bounds

Corollary 2

Suppose Assumptions 1-3 hold. Suppose further that $\left(\theta_{t}\right)_{t \geq 0}$ is generated by the Projected TD algorithm with $\theta^{*} \in \Theta$ and $\alpha_{0}=\cdots=\alpha_{T}=1 / \sqrt{T}$. Then

$$
\begin{aligned}
& E\left[(1-\gamma)\left\|V_{\theta^{*}}-V_{\bar{\theta}_{T}}\right\|_{D}^{2}+\gamma\left\|V_{\theta^{*}}-V_{\bar{\theta}_{T}}\right\|_{\mathrm{Dir}}^{2}\right] \\
& \quad \leq \frac{\left\|\theta^{*}-\theta_{0}\right\|_{2}^{2}+G^{2}\left[9+12 \tau^{\operatorname{mix}}(1 / \sqrt{T})\right]}{2 \sqrt{T}}
\end{aligned}
$$

where $\tau^{\text {mix }}$ is standard notation for the mixing time of the Markov chain: $\tau^{\operatorname{mix}}(\varepsilon)=\min \left\{t \in \mathbb{N}, t \geq 1 \mid m \rho^{t} \leq \varepsilon\right\}$.

Improved Error Bounds

Corollary 2

Suppose Assumptions 1-3 hold. Suppose further that $\left(\theta_{t}\right)_{t \geq 0}$ is generated by the Projected TD algorithm with $\theta^{*} \in \Theta$ and $\alpha_{0}=\cdots=\alpha_{T}=1 / \sqrt{T}$. Then

$$
\begin{array}{r}
E\left[(1-\gamma)\left\|V_{\theta^{*}}-V_{\bar{\theta}_{T}}\right\|_{D}^{2}+\gamma\left\|V_{\theta^{*}}-V_{\bar{\theta}_{T}}\right\|_{\mathrm{Dir}}^{2}\right] \\
\leq \frac{\left\|\theta^{*}-\theta_{0}\right\|_{2}^{2}+G^{2}\left[9+12 \tau^{\operatorname{mix}}(1 / \sqrt{T})\right]}{2 \sqrt{T}},
\end{array}
$$

where $\tau^{\text {mix }}$ is standard notation for the mixing time of the Markov chain: $\tau^{\operatorname{mix}}(\varepsilon)=\min \left\{t \in \mathbb{N}, t \geq 1 \mid m \rho^{t} \leq \varepsilon\right\}$.

- We also generalize gradient splitting and improved error bound on $\operatorname{TD}(0)$ to $\operatorname{TD}(\lambda)$ in our paper.

Compare to Existing Bounds

- Theorem 3(a) in Bhandari et al(2018):

$$
E\left[\left\|V_{\theta^{*}}-V_{\bar{\theta}_{T}}\right\|_{D}^{2}\right] \leq \frac{\left\|\theta^{*}-\theta_{0}\right\|_{2}^{2}}{2(1-\gamma) \sqrt{T}}+\frac{G^{2}\left[9+12 \tau^{\operatorname{mix}}(1 / \sqrt{T})\right]}{2(1-\gamma) \sqrt{T}} .
$$

Compare to Existing Bounds

- Theorem 3(a) in Bhandari et al(2018):

$$
E\left[\left\|V_{\theta^{*}}-V_{\bar{\theta}_{T}}\right\|_{D}^{2}\right] \leq \frac{\left\|\theta^{*}-\theta_{0}\right\|_{2}^{2}}{2(1-\gamma) \sqrt{T}}+\frac{G^{2}\left[9+12 \tau^{\operatorname{mix}}(1 / \sqrt{T})\right]}{2(1-\gamma) \sqrt{T}} .
$$

- This upper bound blows up as $\gamma \rightarrow 1$.

Compare to Existing Bounds

- Theorem 3(a) in Bhandari et al(2018):

$$
E\left[\left\|V_{\theta^{*}}-V_{\bar{\theta}_{T}}\right\|_{D}^{2}\right] \leq \frac{\left\|\theta^{*}-\theta_{0}\right\|_{2}^{2}}{2(1-\gamma) \sqrt{T}}+\frac{G^{2}\left[9+12 \tau^{\operatorname{mix}}(1 / \sqrt{T})\right]}{2(1-\gamma) \sqrt{T}} .
$$

- This upper bound blows up as $\gamma \rightarrow 1$.
- However, based on Corollary 2, we can obtain

$$
E\left[\left\|V_{\theta^{*}}-V_{\bar{\theta}_{T}}\right\|_{\mathrm{Dir}}^{2}\right] \leq \frac{\left\|\theta^{*}-\theta_{0}\right\|_{2}^{2}}{2 \gamma \sqrt{T}}+\frac{G^{2}\left[9+12 \tau^{\operatorname{mix}}(1 / \sqrt{T})\right]}{2 \gamma \sqrt{T}} .
$$

Compare to Existing Bounds

- Theorem 3(a) in Bhandari et al(2018):

$$
E\left[\left\|V_{\theta^{*}}-V_{\bar{\theta}_{T}}\right\|_{D}^{2}\right] \leq \frac{\left\|\theta^{*}-\theta_{0}\right\|_{2}^{2}}{2(1-\gamma) \sqrt{T}}+\frac{G^{2}\left[9+12 \tau^{\operatorname{mix}}(1 / \sqrt{T})\right]}{2(1-\gamma) \sqrt{T}}
$$

- This upper bound blows up as $\gamma \rightarrow 1$.
- However, based on Corollary 2, we can obtain

$$
E\left[\left\|V_{\theta^{*}}-V_{\bar{\theta}_{T}}\right\|_{\mathrm{Dir}}^{2}\right] \leq \frac{\left\|\theta^{*}-\theta_{0}\right\|_{2}^{2}}{2 \gamma \sqrt{T}}+\frac{G^{2}\left[9+12 \tau^{\operatorname{mix}}(1 / \sqrt{T})\right]}{2 \gamma \sqrt{T}}
$$

- Therefore, the error of averaged \& projected temporal difference learning projected on $\mathbf{1}^{\perp}$ does not blow up as $\gamma \rightarrow 1$.

The Scaling with the Discount Factor

- Is it possible to remove the dependence on $O(1 /(1-\gamma))$ from bounds on the performance of temporal difference learning?

The Scaling with the Discount Factor

- Is it possible to remove the dependence on $O(1 /(1-\gamma))$ from bounds on the performance of temporal difference learning?
- Unfortunately, the answer is no. However, it is possible to derive a bound where the only scaling with $1 /(1-\gamma)$ is in the asymptotically negligible term.

Mean-adjusted TD(0)

Algorithm 1 Mean-adjusted TD(0)

1: Initialize $\bar{A}_{0}=0, s_{0} \sim \pi$, and some initial condition θ_{0}.
2: for $t=0$ to $T-1$ do
3: Projected TD(0) update:

$$
\theta_{t+1}=\operatorname{Proj}_{\Theta}\left(\theta_{t}+\alpha_{t} g_{t}\left(\theta_{t}\right)\right)
$$

4: Keep track of the average reward: $\bar{A}_{t+1}=\frac{t \bar{A}_{t}+r_{t+1}}{t+1}$
5: end for
6: Set $\hat{V}_{T}=\frac{\bar{A}_{T}}{1-\gamma}$
7: Output $V_{T}^{\prime}=V_{\bar{\theta}_{T}}+\left(\hat{V}_{T}-\pi^{T} V_{\bar{\theta}_{T}}\right) 1$

A Better Scaling with the Discount Factor

Corollary 3

Suppose that $\left(\theta_{t}\right)_{t \geq 0}$ and V_{T}^{\prime} are generated by Algorithm 1 with step-sizes $\alpha_{0}=\cdots=\alpha_{T}=1 / \sqrt{T}$. Let t_{0} be the largest integer which satisfies $t_{0} \leq 2 \tau^{\text {mix }}\left(\frac{1}{2\left(t_{0}+1\right)}\right)$. Then as long as $T \geq t_{0}$, we will have

$$
\begin{aligned}
& E\left[\left\|V_{T}^{\prime}-V\right\|_{D}^{2}\right] \leq O\left(E\left[\left\|V_{\theta^{*}}-V\right\|_{D}^{2}\right]+\frac{r_{\max }^{2} \tau^{\operatorname{mix}}\left(\frac{1}{2(T+1)}\right)}{(1-\gamma)^{2} T}\right. \\
& \left.\quad+\frac{\left\|\theta^{*}-\theta_{0}\right\|_{2}^{2}+G^{2}\left[1+\tau^{\operatorname{mix}}(1 / \sqrt{T})\right]}{\sqrt{T}} \min \left\{\frac{r(P)}{\gamma}, \frac{1}{1-\gamma}\right\}\right) .
\end{aligned}
$$

