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Learning-Augmented Algorithms

* Learning-Augmented Algorithms are fusions of machine learning
models and classical algorithms.

* In the present paper, we address the Learned Count-Min sketch [Hsu
et. al 2019]



Contribution, in a nutshell

One can think of learning-augmented algorithms as an outfit.
Given the shirt, we choose the shorts.

Shirt: Algorithm

Shorts: Model




Learned Count—Min Sketch

The Count-Min sketch is an algorithm which estimates frequencies in
data streams with small space. It first hashes each element several
times and increments a table of counters.
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The Count-Min sketch is an algorithm which estimates frequencies in
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Learned Count—Min Sketch

The Count-Min sketch is an algorithm which estimates frequencies in
data streams with small space. It first hashes each element several
times and increments a table of counters.
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Learned Count—Min Sketch

Finally, we estimate the frequency of an element by taking the
minimum of all counters it corresponds to.
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Finally, we estimate the frequency of an element by taking the
minimum of all counters it corresponds to.
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Learned Count—Min Sketch

Finally, we estimate the frequency of an element by taking the
minimum of all counters it corresponds to.
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Learned Count—Min Sketch

The learned count-min sketch is the same, except we screen some of
the keys which are predicted to be heavy and track their frequencies
individually.
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Optimizing the Sketch

Note that intuitively, screening more frequent keys is more valuable.
We call the sum of all screened keys the coverage, which we seek to
maximize.
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How do we optimize the model?

* We seek to optimize the model for downstream performance,
without changing architecture!

* We will maximize the coverage.

* Theorem (Informal): The estimation error is essentially increasing in
the complementary coverage.



Optimizing for Coverage
* Hsu et. al uses the squared loss function:

20 [(g0(7) — In f,)?]
)

predictor log frequency

 Since we are optimizing for coverage, frequent elements are more
important than infrequent elements.
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Optimizing for Coverage (cont.)

* Note that the coverage is proportional to

|

Li~ FO [17, screened fz]

* Another method: BatchRank. We split each batch into sub-batches of
size-K and normalize, so we have
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* Then, our final loss function is:
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Results

Ratios are theirs / ours

Minute 60, Weighted Log Loss, width 10000, Count-Min Minute 60, BatchRank (K = 8), width 10000, Count-Min
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Results

Ratios are theirs / ours
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Results

Coverage of predicted 1% highest
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A new model for classification errors

* We observe the rates by which keys are screened and note that it
increases monotonically with frequency.
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* This suggests a heterogenous error model, allowing for stronger
guarantees than a uniform error model.



Conclusion

* We would like to invite the machine learning community to try out
these tasks—our code can be found here.

* When one can find an accurate proxy for performance (e.g. coverage),
training to optimize the proxy can lead to significant improvements.


https://github.com/franklynwang/putting-the-learning-in-LAA
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