Putting the "Learning" in Learning-Augmented Algorithms for Frequency Estimation

Elbert Du*, Franklyn Wang*, and Michael Mitzenmacher
Harvard University

Learning-Augmented Algorithms

• Learning-Augmented Algorithms are fusions of machine learning models and classical algorithms.

• In the present paper, we address the Learned Count-Min sketch [Hsu et. al 2019]

Contribution, in a nutshell

One can think of learning-augmented algorithms as an outfit.

Given the shirt, we choose the shorts.

The Count-Min sketch is an algorithm which estimates frequencies in data streams with small space. It first hashes each element several times and increments a table of counters.

The Count-Min sketch is an algorithm which estimates frequencies in data streams with small space. It first hashes each element several times and increments a table of counters.

The Count-Min sketch is an algorithm which estimates frequencies in data streams with small space. It first hashes each element several times and increments a table of counters.

The Count-Min sketch is an algorithm which estimates frequencies in data streams with small space. It first hashes each element several times and increments a table of counters.

The Count-Min sketch is an algorithm which estimates frequencies in data streams with small space. It first hashes each element several times and increments a table of counters.

Finally, we estimate the frequency of an element by taking the *minimum* of all counters it corresponds to.

Finally, we estimate the frequency of an element by taking the *minimum* of all counters it corresponds to.

Finally, we estimate the frequency of an element by taking the *minimum* of all counters it corresponds to.

r: 10

g: 5

b: 12

The learned count-min sketch is the same, except we screen some of the keys which are predicted to be heavy and track their frequencies individually.

Optimizing the Sketch

Note that intuitively, screening more frequent keys is more valuable. We call the sum of all screened keys the *coverage*, which we seek to maximize.

How do we optimize the model?

We seek to optimize the model for downstream performance,
 without changing architecture!

We will maximize the coverage.

• **Theorem (Informal):** The estimation error is essentially increasing in the complementary coverage.

Optimizing for Coverage

Hsu et. al uses the squared loss function:

$$\mathbb{E}_{i \sim F^0}[(g_{\theta}(i) - \ln f_i)^2]$$
predictor log frequency

• Since we are optimizing for coverage, frequent elements are more important than infrequent elements.

$$\mathbb{E}_{i \sim F^1}[(g_{\theta}(i) - \ln f_i)^2]$$

Optimizing for Coverage (cont.)

Note that the coverage is proportional to

$$\mathbb{E}_{i \sim F^0}[1_{i \text{ screened}} f_i]$$

• Another method: **BatchRank**. We split each batch into sub-batches of size-K and normalize, so we have

$$g'_{\theta}(i) = \frac{g_{\theta}(i) - \mu}{\sigma}.$$

• Then, our final loss function is:

$$\mathbb{E}_{i\sim F^0}[g_{\theta}'(i)f_i]$$

Results

Ratios are theirs / ours

Minute 60, BatchRank (K = 8), width 10000, Count-Min

Results

Ratios are theirs / ours

Results

A new model for classification errors

 We observe the rates by which keys are screened and note that it increases monotonically with frequency.

• This suggests a heterogenous error model, allowing for stronger guarantees than a uniform error model.

Conclusion

 We would like to invite the machine learning community to try out these tasks—our code can be found here.

• When one can find an accurate proxy for performance (e.g. coverage), training to optimize the proxy can lead to significant improvements.

References

 Hsu, Chen-Yu, et al. "Learning-Based Frequency Estimation Algorithms." International Conference on Learning Representations. 2019.