Putting the “Learning” in
Learning-Augmented Algorithms
for Frequency Estimation

Elbert Du*, Franklyn Wang*, and Michael Mitzenmacher

Harvard University

Learning-Augmented Algorithms

* Learning-Augmented Algorithms are fusions of machine learning
models and classical algorithms.

* In the present paper, we address the Learned Count-Min sketch [Hsu
et. al 2019]

Contribution, in a nutshell

One can think of learning-augmented algorithms as an outfit.
Given the shirt, we choose the shorts.

Shirt: Algorithm

Shorts: Model

Learned Count—Min Sketch

The Count-Min sketch is an algorithm which estimates frequencies in
data streams with small space. It first hashes each element several
times and increments a table of counters.

rgrbgbbrbggbrbbbgrbbbb

~ 0

o|o |
o
o
o

Learned Count—Min Sketch

The Count-Min sketch is an algorithm which estimates frequencies in
data streams with small space. It first hashes each element several
times and increments a table of counters.

rgrbgbbrbggbrbbbgrbbbb

~ 1

o | o |~¥
o
o
o

Learned Count—Min Sketch

The Count-Min sketch is an algorithm which estimates frequencies in
data streams with small space. It first hashes each element several
times and increments a table of counters.

rgrbgbbrbggbrbbbgrbbbb

5 |ofofofo
0
0

Learned Count—Min Sketch

The Count-Min sketch is an algorithm which estimates frequencies in
data streams with small space. It first hashes each element several
times and increments a table of counters.

rgrbgbbrbggbrbbbgrbbbb

505100

o| 07510 | 0 [10

Learned Count—Min Sketch

The Count-Min sketch is an algorithm which estimates frequencies in
data streams with small space. It first hashes each element several
times and increments a table of counters.

rgrbgbbrbggbrbbbgrbbbb

171015 |00
o|o]o[12]10

Learned Count—Min Sketch

Finally, we estimate the frequency of an element by taking the
minimum of all counters it corresponds to.

rgrbgbbrbggbrbbbgrbbbb r: 10

Learned Count—Min Sketch

Finally, we estimate the frequency of an element by taking the
minimum of all counters it corresponds to.

rgrbgbbrbggbrbbbgrbbbb r: 10

171050 |0

0| 00 |12][10
0| 0|17[*5 | 0

Learned Count—Min Sketch

Finally, we estimate the frequency of an element by taking the
minimum of all counters it corresponds to.

rgrbgbbrbggbrbbbgrbbbb

170 0f5 |0 | 0

Learned Count—Min Sketch

The learned count-min sketch is the same, except we screen some of
the keys which are predicted to be heavy and track their frequencies
individually.

rgerbgbbrbggbrbbbgrbbbb

:12
510|500

b 12 0| 0] 0] 0|10

o 0m 3
= o U

Optimizing the Sketch

Note that intuitively, screening more frequent keys is more valuable.
We call the sum of all screened keys the coverage, which we seek to
maximize.

rgerbgbbrbggbrbbbgrbbbb

o m
= o U

How do we optimize the model?

* We seek to optimize the model for downstream performance,
without changing architecture!

* We will maximize the coverage.

* Theorem (Informal): The estimation error is essentially increasing in
the complementary coverage.

Optimizing for Coverage
* Hsu et. al uses the squared loss function:

20 [(g0(7) — In f,)?]
)

predictor log frequency

 Since we are optimizing for coverage, frequent elements are more
important than infrequent elements.

ior [(96(1) — In f)7]

Optimizing for Coverage (cont.)

* Note that the coverage is proportional to

|

Li~ FO [17, screened fz]

* Another method: BatchRank. We split each batch into sub-batches of
size-K and normalize, so we have

g6(7) K

gy (i) =

* Then, our final loss function is:

im0 [90(7) fi]

Results

Ratios are theirs / ours

Minute 60, Weighted Log Loss, width 10000, Count-Min Minute 60, BatchRank (K = 8), width 10000, Count-Min
1.5 - cc ratio 15| — ccratio
error ratio (1 hash) ' error ratio (1 hash)
—— error ratio (2 hashes) —— error ratio (2 hashes)
1.4 1 —— error ratio (3 hashes) —— error ratio (3 hashes)
—— error ratio (4 hashes) Ly error ratio (4 hashes)
v 1.3 v
> =}
o © 131
e 4]
o 1.2 o
< c
= =
o o 1.21
2 1.1 2
o o
1.0 - \/ 1.1 A
0-9 T 1.0 n
0.0 25 50 75 10.0 12,5 15.0 17.5 20.0 0.0 25 50 7.5 10.0 12.5 15.0 17.5 20.0

Explicit Counter Percentage (%) Explicit Counter Percentage (%)

Results

Ratios are theirs / ours

Minute 60, Weighted Log Loss, width 10000, Count-Sketch Minute 60, BatchRank (K = 8), width 10000, Count-Sketch
2.2
— CcC ratio
20 error ratio (1 hash)
' 2.0 4 — error ratio (2 hashes)
—— error ratio (3 hashes)
1.8 - —— error ratio (4 hashes)
,5 @ 1.8
=} >
©16- S
2 »
o = 1.6
c c
E 1.4 =
.© o
T B 1.4-
m —~ D:
1.2 1 —— cc ratio
error ratio (1 hash) 124
1.0 —— error ratio (2 hashes)
—— error ratio (3 hashes)
—— error ratio (4 hashes) 1.0 A
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Explicit Counter Percentage (%) Explicit Counter Percentage (%)

Results

Coverage of predicted 1% highest

0.45
0.4
0.35
03
0.25
0.2
0.15
0.1

0.05

e Jnweighted Loss =====\Neighted Loss

A new model for classification errors

* We observe the rates by which keys are screened and note that it
increases monotonically with frequency.

Screened Rate

W”"’”W

0 20 40 60 80 100
Frequency Percentile

* This suggests a heterogenous error model, allowing for stronger
guarantees than a uniform error model.

Conclusion

* We would like to invite the machine learning community to try out
these tasks—our code can be found here.

* When one can find an accurate proxy for performance (e.g. coverage),
training to optimize the proxy can lead to significant improvements.

https://github.com/franklynwang/putting-the-learning-in-LAA

References

* Hsu, Chen-Yu, et al. "Learning-Based Frequency Estimation
Algorithms." International Conference on Learning Representations.
20109.

