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When is transfer learning between two tasks easy?

1. Deep networks pre-trained on a particular task typically perform
well on many tasks.

2. But there are also situations when transfer learning does not
work well.

- e.g., a pre-trained model on ImageNet is a poor representation
to transfer to classification of medical images.

Motivation. We would like to theoretically characterize the distance
between two learning tasks.
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Desiderata for a task distance

1. A learning task is defined to be a joint distribution p(x , y)
between input x and label y .

2. There are many distances between task distributions.
- e.g., KL divergence, Wasserstein distance....

3. Distance between "learning" tasks is NOT the distance between
two probability distributions.

- Learning a new task depends on the capacity of hypothesis class
that is used to transfer.

- It is observed that transferring larger models is easier. A proper
task distance needs to capture this fact.

4. Task distance should be comparable across different network
architectures.
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Coupled transfer distance: Modifying the task and classifier
synchronously during transfer

ps(x , y) = psws
(y |x) ps(x) −→ pt(x , y) = ptwt

(y |x) pt(x). (1)

Roughly speaking, the length of shortest trajectory
connecting ps(x , y) and pt(x , y) on statistical manifold
parametrized by w ∈W is our transfer distance.

4 / 8



Coupled transfer distance: Modifying the task and classifier
synchronously during transfer

ps(x , y) = psws
(y |x) ps(x) −→ pt(x , y) = ptwt

(y |x) pt(x). (1)

Roughly speaking, the length of shortest trajectory
connecting ps(x , y) and pt(x , y) on statistical manifold
parametrized by w ∈W is our transfer distance. 4 / 8



Technical description of the coupled transfer distance
1. Manifold M := {pw (Z) : w ∈ Rp} of positive measures on

space Z specified by a vector parameter w .

2. Use KL [pw , pw ′ ] =
∫

dpw (z) log pw (z)/pw ′(z) to obtain a
Riemannian structure,

ds2 = 2KL [pw , pw+dw ] =

p∑
i ,j=1

gij dwidwj , (2)

where (gij) is the Fisher Information Matrix (FIM).
3. Coupled transfer distance between learning tasks is the

solution of the following optimization problem.

min
Γ∈Π

∫ 1

0
E

(x ,y)∼pτ (x ,y)

√
2KLpw(τ)(·|x), pw(τ+dτ)(·|x)

subject to
dw(τ)

dτ
= −∇w E

(x ,y)∼pτ
log pw(τ)(y |x)

and pτ (x) =
Ns∑
i=1

Nt∑
j=1

Γij δ(1−τ)xi+τx
′
j
(x)

(3)
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Experiments: transferring across super-classes of CIFAR-100

herbivores carnivores vehicles 1 vehicles 2 flowers
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s 1

ve
hi
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flo
we

rs

0 0.23 0.18 0.17 0.2

0.23 0 0.18 0.17 0.2

0.2 0.21 0 0.18 0.2

0.21 0.19 0.2 0 0.19

0.2 0.19 0.17 0.16 0

(a) Coupled Transfer Distance
(r = 0.14, p = 0.05 with
fine-tuning)
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0 87 87 29 68

82 0 52 40 1.1e+02

1.2e+02 78 0 26 67

72 44 57 0 60

99 41 34 32 0

(b) Fine-Tuning
(r = 0.36, p = 0.03 with itself)

1. We use the Mantel test to accept/reject the null hypothesis
that variations in two distance matrices are correlated.
Large r with small p indicates better correlation.

2. Task2Vec(Achille et al., 2019) does NOT correlate with the
difficulty of fine-tuning well.
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Larger model capacity results in smaller task distance
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(a) Couple Transfer
Distance(WideRes),
(r = 0.15, p = 0.01 with
fine-tuning)
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(b) Fine-Tuning(WideRes),
(r = 0.39, p = 0.01 with itself)

The larger WRN-16-4 model has a smaller task distance for all pairs
compared to the smaller convolutional network on the previous slide.

7 / 8



Discussion

1. Our work is an attempt to theoretically understand when
transfer is easy and when it is not.

2. Coupled transfer distance accurately reflects the difficulty of
transfer/fine-tuning.

3. Future work: Both task and weights are modified synchronously
here, we would like to use the tools developed here for practical
applications, e.g., to design methods that can select the best
source task or the best architecture to transfer.
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