Off-Policy Confidence Sequences

Nikos Karampatziakis (Microsoft)

Paul Mineiro (Microsoft)

Aaditya Ramdas (CMU)

Setup

- ♦ We have
 - \diamond a system acting according to policy h.
 - \Leftrightarrow contextual bandit data $(x_i, a_i, r_i, h(a_i|x_i))$
- \diamond We want to know if a new policy π is better than h

Hello!

I'm Microsoft's Virtual Agent. I'd love to help you. You can also ask to talk to a person at any time. Please briefly describe your issue below.

i lost my email

Which one did you mean?

Microsoft account recovery form

Recover email that is still in the deleted items folder

None of the above

Off-Policy Evaluation

- \Leftrightarrow Have: $x \sim D$, $a \sim h(x)$, $r \sim R(x, a)$. Want to estimate $V(\pi) \coloneqq E_{\substack{x \sim D \\ a \sim \pi(x) \\ r \sim R(x, a)}}[r]$
- \Rightarrow IPS estimator: $\hat{V}^{IPS}(\pi) \coloneqq \frac{1}{N} \sum_{i=1}^{N} \frac{\pi(a_i|x_i)}{h(a_i|x_i)} r_i \coloneqq \frac{1}{N} \sum_{i=1}^{N} w_i r_i$
- Can have large variance

Confidence Intervals and Sequences

- ♦ Given a **fixed** dataset S of iid contextual bandit data of size N
- ♦ A (1α) Confidence Interval is a set C = C(S, N) such that $Pr(V(\pi) \notin C) \le \alpha$
- Confidence Intervals lack adaptivity over time:
 - ♦ Need to choose *N* upfront.
 - Can't early stop experiment.
 - ♦ Data cannot be reused without correction.
- \diamond Confidence Sequences are sequences of sets C_t such that

$$\Pr(\exists t: V(\pi) \notin C_t) \leq \alpha$$

Off-Policy Confidence Sequences

Our Off-Policy Confidence Sequences are constructed by observing that the quantity

$$K_t(v) = \prod_{i=1}^t (1 + \lambda_{1,i}(w_i - 1) + \lambda_{2,i}(w_i r_i - v))$$

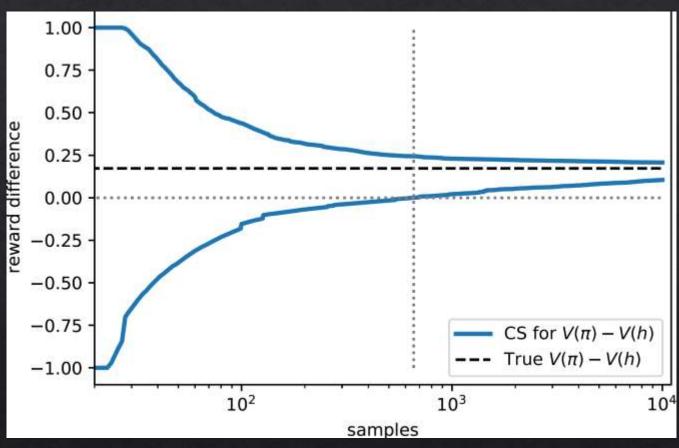
is a **non-negative martingale** iff $v = V(\pi)$, under the following constraints:

- $\diamond \lambda_{1,i}, \lambda_{2,i}$ are numbers **chosen online**
- ♦ Each factor is non-negative
- ♦ **Theorem**: The set $\{v: K_t(v) \le \frac{1}{\alpha}\}$ is a 1α CS
- \diamond Good ways of choosing $\lambda_{1,i}$, $\lambda_{2,i}$ will lead to a small set

Our techniques

- \diamond View $K_t(v)$ as the wealth of a skeptic betting against the hypothesis $V(\pi) = v$
- $\lambda_{1,i}$, $\lambda_{2,i}$ are related to size and direction (e.g. $v > V(\pi)$) of skeptic's bets.
- Choose bets to maximize wealth.
- \diamond To do this efficiently for all v we use:
 - ♦ Bets derived by optimizing wealth lower bound
 - \diamond A "hedging" technique and common bets for all v
 - \Leftrightarrow A tight relaxation of $\left\{v: K_t(v) \leq \frac{1}{\alpha}\right\}$
- ♦ We also show how to incorporate a **reward predictor** to reduce variance

Example Experiment



More experiments in the paper assessing coverage, width, timings, design decisions (ablations) and the effect of a reward predictor.

Conclusions

- Confidence Sequences let you monitor your experiment
- ♦ We derived Confidence Sequences for off-policy evaluation via a **betting** view
 - ♦ Simple to implement https://github.com/n17s/mope
 - ♦ Computationally efficient
 - ♦ Empirically tight